These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 330502
1. Glutamate transport driven by an electrochemical gradient of sodium ions in Escherichia coli. Tsuchiya T, Hasan SM, Raven J. J Bacteriol; 1977 Sep; 131(3):848-53. PubMed ID: 330502 [Abstract] [Full Text] [Related]
2. Energetics of sodium efflux from Escherichia coli. Borbolla MG, Rosen BP. Arch Biochem Biophys; 1984 Feb 15; 229(1):98-103. PubMed ID: 6322694 [Abstract] [Full Text] [Related]
3. Mechanism of glutamate transport in Escherichia coli B. 2. Kinetics of glutamate transport driven by artificially imposed proton and sodium ion gradients across the cytoplasmic membrane. Fujimura T, Yamato I, Anraku Y. Biochemistry; 1983 Apr 12; 22(8):1959-65. PubMed ID: 6133551 [Abstract] [Full Text] [Related]
7. Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli. Willis RC, Furlong CE. J Biol Chem; 1975 Apr 10; 250(7):2581-6. PubMed ID: 1091636 [Abstract] [Full Text] [Related]
8. Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles. Ballatori N, Moseley RH, Boyer JL. J Biol Chem; 1986 May 15; 261(14):6216-21. PubMed ID: 2871024 [Abstract] [Full Text] [Related]
9. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. I. Kinetics of the light-dependent and the sodium-gradient-dependent uptake. Lanyi JK, Yearwood-Drayton V, MacDonald RE. Biochemistry; 1976 Apr 20; 15(8):1595-603. PubMed ID: 1268186 [Abstract] [Full Text] [Related]
10. Active alanine transport in isolated brush border membranes. Sigrist-Nelson K, Murer H, Hopfer U. J Biol Chem; 1975 Jul 25; 250(14):5674-80. PubMed ID: 1141245 [Abstract] [Full Text] [Related]
11. Glutamate transport driven by an electrochemical gradient of sodium ion in membrane vesicles of Escherichia coli B. Hasan SM, Tsuchiya T. Biochem Biophys Res Commun; 1977 Sep 09; 78(1):122-8. PubMed ID: 334163 [No Abstract] [Full Text] [Related]
12. Both Na+ and Cl- gradients energize NaCl/L-glutamate cotransport in lobster hepatopancreatic brush border membrane vesicles. Balon LM, Ahearn GA. Biochim Biophys Acta; 1991 Aug 26; 1067(2):123-30. PubMed ID: 1678969 [Abstract] [Full Text] [Related]
13. Sodium and potassium requirements for active transport of glutamate by Escherichia coli K-12. Halpern YS, Barash H, Dover S, Druck K. J Bacteriol; 1973 Apr 26; 114(1):53-8. PubMed ID: 4572725 [Abstract] [Full Text] [Related]
14. Role of lithium ions in proline transport in Escherichia coli. Kayama-Gonda Y, Kawasaki T. J Bacteriol; 1979 Aug 26; 139(2):560-4. PubMed ID: 37240 [Abstract] [Full Text] [Related]
16. Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism. Schneider EG, Hammerman MR, Sacktor B. J Biol Chem; 1980 Aug 25; 255(16):7650-6. PubMed ID: 6156940 [No Abstract] [Full Text] [Related]
17. Na-dependent L-glutamate transport by eel intestinal BBMV: role of K+ and Cl-. Romano PM, Ahearn GA, Storelli C. Am J Physiol; 1989 Jul 25; 257(1 Pt 2):R180-8. PubMed ID: 2568760 [Abstract] [Full Text] [Related]
18. Mechanism of glutamate transport in Escherichia coli B. 1. Proton-dependent and sodium ion dependent binding of glutamate to a glutamate carrier in the cytoplasmic membrane. Fujimura T, Yamato I, Anraku Y. Biochemistry; 1983 Apr 12; 22(8):1954-9. PubMed ID: 6133550 [Abstract] [Full Text] [Related]
19. Effect of membrane potential on the kinetic parameters of the Na+ or H+ melibiose symport in Escherichia coli membrane vesicles. Bassilana M, Damiano-Forano E, Leblanc G. Biochem Biophys Res Commun; 1985 Jun 28; 129(3):626-31. PubMed ID: 3893429 [Abstract] [Full Text] [Related]
20. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular greater than extravesicular proton gradient. Sacktor B, Cheng L. J Biol Chem; 1981 Aug 10; 256(15):8080-4. PubMed ID: 7263641 [Abstract] [Full Text] [Related] Page: [Next] [New Search]