These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 33058400
1. Genetic architecture to cause dynamic change in tiller and panicle numbers revealed by genome-wide association study and transcriptome profile in rice. Ma X, Li F, Zhang Q, Wang X, Guo H, Xie J, Zhu X, Ullah Khan N, Zhang Z, Li J, Li Z, Zhang H. Plant J; 2020 Dec; 104(6):1603-1616. PubMed ID: 33058400 [Abstract] [Full Text] [Related]
2. A genome-wide association study using a Vietnamese landrace panel of rice (Oryza sativa) reveals new QTLs controlling panicle morphological traits. Ta KN, Khong NG, Ha TL, Nguyen DT, Mai DC, Hoang TG, Phung TPN, Bourrie I, Courtois B, Tran TTH, Dinh BY, LA TN, DO NV, Lebrun M, Gantet P, Jouannic S. BMC Plant Biol; 2018 Nov 14; 18(1):282. PubMed ID: 30428844 [Abstract] [Full Text] [Related]
3. Genome-wide expression quantitative trait locus studies facilitate isolation of causal genes controlling panicle structure. Wang F, Yano K, Nagamatsu S, Inari-Ikeda M, Koketsu E, Hirano K, Aya K, Matsuoka M. Plant J; 2020 Jul 14; 103(1):266-278. PubMed ID: 32072700 [Abstract] [Full Text] [Related]
4. Genetic basis underlying tiller angle in rice (Oryza sativa L.) by genome-wide association study. Bai S, Hong J, Su S, Li Z, Wang W, Shi J, Liang W, Zhang D. Plant Cell Rep; 2022 Aug 14; 41(8):1707-1720. PubMed ID: 35776138 [Abstract] [Full Text] [Related]
5. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.). Yan Y, Wei M, Li Y, Tao H, Wu H, Chen Z, Li C, Xu JH. Plant Sci; 2021 Jan 14; 302():110728. PubMed ID: 33288029 [Abstract] [Full Text] [Related]
6. Genetic variation and association mapping for 12 agronomic traits in indica rice. Lu Q, Zhang M, Niu X, Wang S, Xu Q, Feng Y, Wang C, Deng H, Yuan X, Yu H, Wang Y, Wei X. BMC Genomics; 2015 Dec 16; 16():1067. PubMed ID: 26673149 [Abstract] [Full Text] [Related]
7. Uncovering the genetic mechanisms regulating panicle architecture in rice with GPWAS and GWAS. Zhong H, Liu S, Meng X, Sun T, Deng Y, Kong W, Peng Z, Li Y. BMC Genomics; 2021 Jan 28; 22(1):86. PubMed ID: 33509071 [Abstract] [Full Text] [Related]
8. A Novel Tiller Angle Gene, TAC3, together with TAC1 and D2 Largely Determine the Natural Variation of Tiller Angle in Rice Cultivars. Dong H, Zhao H, Xie W, Han Z, Li G, Yao W, Bai X, Hu Y, Guo Z, Lu K, Yang L, Xing Y. PLoS Genet; 2016 Nov 28; 12(11):e1006412. PubMed ID: 27814357 [Abstract] [Full Text] [Related]
9. Fine mapping and candidate gene analysis of a major QTL for panicle structure in rice. Peng Y, Gao Z, Zhang B, Liu C, Xu J, Ruan B, Hu J, Dong G, Guo L, Liang G, Qian Q. Plant Cell Rep; 2014 Nov 28; 33(11):1843-50. PubMed ID: 25079308 [Abstract] [Full Text] [Related]
10. The rice pds1 locus genetically interacts with partner to cause panicle exsertion defects and ectopic tillers in spikelets. Jiang Q, Zeng Y, Yu B, Cen W, Lu S, Jia P, Wang X, Qin B, Cai Z, Luo J. BMC Plant Biol; 2019 May 15; 19(1):200. PubMed ID: 31092192 [Abstract] [Full Text] [Related]
11. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.). Ke S, Liu XJ, Luan X, Yang W, Zhu H, Liu G, Zhang G, Wang S. Gene; 2018 Oct 30; 675():285-300. PubMed ID: 29969697 [Abstract] [Full Text] [Related]
12. Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Crowell S, Korniliev P, Falcão A, Ismail A, Gregorio G, Mezey J, McCouch S. Nat Commun; 2016 Feb 04; 7():10527. PubMed ID: 26841834 [Abstract] [Full Text] [Related]
13. Quantitative trait loci identification and meta-analysis for rice panicle-related traits. Wu Y, Huang M, Tao X, Guo T, Chen Z, Xiao W. Mol Genet Genomics; 2016 Oct 04; 291(5):1927-40. PubMed ID: 27380139 [Abstract] [Full Text] [Related]
14. Genome wide association mapping for grain shape traits in indica rice. Feng Y, Lu Q, Zhai R, Zhang M, Xu Q, Yang Y, Wang S, Yuan X, Yu H, Wang Y, Wei X. Planta; 2016 Oct 04; 244(4):819-30. PubMed ID: 27198135 [Abstract] [Full Text] [Related]
15. Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice (Oryza sativa L.). Liu G, Zhu H, Liu S, Zeng R, Zhang Z, Li W, Ding X, Zhao F, Zhang G. Genetica; 2010 Aug 04; 138(8):885-93. PubMed ID: 20623365 [Abstract] [Full Text] [Related]
16. QTL Mapping of Tiller Number in Korean Japonica Rice Varieties. Yoon DK, Choi I, Won YJ, Shin Y, Cheon KS, Oh H, Lee C, Lee S, Cho MH, Jun S, Kim Y, Kim SL, Baek J, Jeong H, Lyu JI, Lee GS, Kim KH, Ji H. Genes (Basel); 2023 Aug 06; 14(8):. PubMed ID: 37628644 [Abstract] [Full Text] [Related]
17. Genetic basis of vascular bundle variations in rice revealed by genome-wide association study. Liao S, Yan J, Xing H, Tu Y, Zhao H, Wang G. Plant Sci; 2021 Jan 06; 302():110715. PubMed ID: 33288021 [Abstract] [Full Text] [Related]
18. Time-related mapping of quantitative trait loci underlying tiller number in rice. Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ. Genetics; 1999 Jan 06; 151(1):297-303. PubMed ID: 9872968 [Abstract] [Full Text] [Related]
19. Fine mapping of a quantitative trait locus for spikelet number per panicle in a new plant type rice and evaluation of a near-isogenic line for grain productivity. Sasaki K, Fujita D, Koide Y, Lumanglas PD, Gannaban RB, Tagle AG, Obara M, Fukuta Y, Kobayashi N, Ishimaru T. J Exp Bot; 2017 May 17; 68(11):2693-2702. PubMed ID: 28582550 [Abstract] [Full Text] [Related]
20. Genome-wide association study of important agronomic traits within a core collection of rice (Oryza sativa L.). Zhang P, Zhong K, Zhong Z, Tong H. BMC Plant Biol; 2019 Jun 17; 19(1):259. PubMed ID: 31208337 [Abstract] [Full Text] [Related] Page: [Next] [New Search]