These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
297 related items for PubMed ID: 33058971
21. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method. Ma Y, Chen S, Liao W, Zhang L, Liu J, Gao Y. J Agric Food Chem; 2020 Jul 08; 68(27):7103-7111. PubMed ID: 32559379 [Abstract] [Full Text] [Related]
22. Maintained particulate integrity of soy protein nanoparticles during gastrointestinal digestion via genipin crosslinking enhancing stability and bioavailability of curcumin. Yuan D, Qin L, Niu Z, Zhou F, Zhao M. Int J Biol Macromol; 2024 Aug 08; 274(Pt 2):133213. PubMed ID: 38889834 [Abstract] [Full Text] [Related]
23. Fabrication of curcumin-zein-ethyl cellulose composite nanoparticles using antisolvent co-precipitation method. Hasankhan S, Tabibiazar M, Hosseini SM, Ehsani A, Ghorbani M. Int J Biol Macromol; 2020 Nov 15; 163():1538-1545. PubMed ID: 32784024 [Abstract] [Full Text] [Related]
24. Insight into the formation mechanism of soy protein isolate films improved by cellulose nanocrystals. Xiao Y, Liu Y, Kang S, Xu H. Food Chem; 2021 Oct 15; 359():129971. PubMed ID: 33962191 [Abstract] [Full Text] [Related]
25. Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability. Yu C, Shan J, Ju H, Chen X, Xu G, Wu Y. Foods; 2023 Jul 13; 12(14):. PubMed ID: 37509784 [Abstract] [Full Text] [Related]
26. Soy Soluble Polysaccharide as a Nanocarrier for Curcumin. Chen FP, Ou SY, Chen Z, Tang CH. J Agric Food Chem; 2017 Mar 01; 65(8):1707-1714. PubMed ID: 28185459 [Abstract] [Full Text] [Related]
27. Fabrication and characterization of sunflower protein isolate nanoparticles, and their potential for encapsulation and sustainable release of curcumin. Mehryar L, Esmaiili M, Zeynali F, Imani M, Sadeghi R. Food Chem; 2021 Sep 01; 355():129572. PubMed ID: 33799269 [Abstract] [Full Text] [Related]
28. Gelatin-nanocellulose stabilized emulsion-filled hydrogel beads loaded with curcumin: Preparation, encapsulation and release behavior. Liu S, Wang Y, Huang Y, Hu M, Lv X, Zhang Y, Dai H. Int J Biol Macromol; 2024 Aug 01; 275(Pt 2):133551. PubMed ID: 38997845 [Abstract] [Full Text] [Related]
29. Fabrication of soy protein-polyphenol covalent complex nanoparticles with improved wettability to stabilize high-oil-phase curcumin emulsions. Xu J, Ji F, Luo S, Jiang S, Yu Z, Ye A, Zheng Z. J Sci Food Agric; 2024 Nov 01; 104(14):8445-8455. PubMed ID: 38895880 [Abstract] [Full Text] [Related]
30. Fabrication of Polydopamine-Based Curcumin Nanoparticles for Chemical Stability and pH-Responsive Delivery. Pan H, Shen X, Tao W, Chen S, Ye X. J Agric Food Chem; 2020 Mar 04; 68(9):2795-2802. PubMed ID: 32031786 [Abstract] [Full Text] [Related]
31. Magnetic cellulose nanocrystal stabilized Pickering emulsions for enhanced bioactive release and human colon cancer therapy. Low LE, Tan LT, Goh BH, Tey BT, Ong BH, Tang SY. Int J Biol Macromol; 2019 Apr 15; 127():76-84. PubMed ID: 30639596 [Abstract] [Full Text] [Related]
32. Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. T S A, V CS, F S, Thomas JP. Int J Biol Macromol; 2019 Aug 15; 135():776-789. PubMed ID: 31158423 [Abstract] [Full Text] [Related]
33. N-Acetyl-l-cysteine/l-Cysteine-Functionalized Chitosan-β-Lactoglobulin Self-Assembly Nanoparticles: A Promising Way for Oral Delivery of Hydrophilic and Hydrophobic Bioactive Compounds. Du Z, Liu J, Zhang H, Wu X, Zhang B, Chen Y, Liu B, Ding L, Xiao H, Zhang T. J Agric Food Chem; 2019 Nov 13; 67(45):12511-12519. PubMed ID: 31626537 [Abstract] [Full Text] [Related]
34. Fabrication and characterization of self-assembled whey protein isolate/short linear glucan core-shell nanoparticles for sustained release of curcumin. Li X, Xu T, Wu C, Fan G, Li T, Wang Y, Zhou D. Food Chem; 2023 May 01; 407():135124. PubMed ID: 36473353 [Abstract] [Full Text] [Related]
35. Nano-encapsulation of curcumin using soy protein hydrolysates - tannic acid complexes regulated by photocatalysis: a study on the storage stability and in vitro release. Jin B, Zhou X, Zhou S, Liu Y, Zheng Z, Liang Y, Chen S. J Microencapsul; 2019 Jun 01; 36(4):385-398. PubMed ID: 31238757 [Abstract] [Full Text] [Related]
36. Fabrication and characterization of soy β-conglycinin-dextran-polyphenol nanocomplexes: Improvement on the antioxidant activity and sustained-release property of curcumin. Wang ZJ, Xu JJ, Ji FY, Luo SZ, Li XJ, Mu DD, Jiang ST, Zheng Z. Food Chem; 2022 Nov 30; 395():133562. PubMed ID: 35763923 [Abstract] [Full Text] [Related]
37. PH sensitive double-layered emulsions stabilized by bacterial cellulose nanofibers/soy protein isolate/chitosan complex enhanced the bioaccessibility of curcumin: In vitro study. Shen R, Yang X, Lin D. Food Chem; 2023 Feb 15; 402():134262. PubMed ID: 36126584 [Abstract] [Full Text] [Related]
38. Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin. Luo L, Wu Y, Liu C, Zou Y, Huang L, Liang Y, Ren J, Liu Y, Lin Q. Food Chem; 2021 Jan 30; 336():127669. PubMed ID: 32758804 [Abstract] [Full Text] [Related]
39. Enhanced encapsulation of lutein using soy protein isolate nanoparticles prepared by pulsed electric field and pH shifting treatment. Wang R, Zeng MQ, Wu YW, Teng YX, Wang LH, Li J, Xu FY, Chen BR, Han Z, Zeng XA. Food Chem; 2023 Oct 30; 424():136386. PubMed ID: 37236083 [Abstract] [Full Text] [Related]
40. Oxidized Dextran as a Macromolecular Crosslinker Stabilizes the Zein/Caseinate Nanocomplex for the Potential Oral Delivery of Curcumin. Rodriguez NJ, Hu Q, Luo Y. Molecules; 2019 Nov 09; 24(22):. PubMed ID: 31717559 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]