These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 33079875

  • 21. Comparison of Transcranial Doppler and Ultrasound-Tagged Near Infrared Spectroscopy for Measuring Relative Changes in Cerebral Blood Flow in Human Subjects.
    Lipnick MS, Cahill EA, Feiner JR, Bickler PE.
    Anesth Analg; 2018 Feb; 126(2):579-587. PubMed ID: 29189269
    [Abstract] [Full Text] [Related]

  • 22. Sevoflurane anesthesia and brain perfusion.
    Rhondali O, André C, Pouyau A, Mahr A, Juhel S, De Queiroz M, Rhzioual-Berrada K, Mathews S, Chassard D.
    Paediatr Anaesth; 2015 Feb; 25(2):180-5. PubMed ID: 25224780
    [Abstract] [Full Text] [Related]

  • 23. Validation of transcranial near-infrared spectroscopy for evaluation of cerebral blood flow autoregulation.
    Olsen KS, Svendsen LB, Larsen FS.
    J Neurosurg Anesthesiol; 1996 Oct; 8(4):280-5. PubMed ID: 8884624
    [Abstract] [Full Text] [Related]

  • 24. Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery.
    Brady KM, Mytar JO, Lee JK, Cameron DE, Vricella LA, Thompson WR, Hogue CW, Easley RB.
    Stroke; 2010 Sep; 41(9):1957-62. PubMed ID: 20651273
    [Abstract] [Full Text] [Related]

  • 25. Near-infrared spectroscopy and transcranial sonography to evaluate cerebral autoregulation in middle cerebral artery steno-occlusive disease.
    Oldag A, Neumann J, Goertler M, Hinrichs H, Heinze HJ, Kupsch A, Sweeney-Reed CM, Kopitzki K.
    J Neurol; 2016 Nov; 263(11):2296-2301. PubMed ID: 27544503
    [Abstract] [Full Text] [Related]

  • 26. Real-time continuous neuromonitoring combines transcranial cerebral Doppler with near-infrared spectroscopy cerebral oxygen saturation during total aortic arch replacement procedure: a pilot study.
    Wang X, Ji B, Yang B, Liu G, Miao N, Yang J, Liu J, Long C.
    ASAIO J; 2012 Nov; 58(2):122-6. PubMed ID: 22370681
    [Abstract] [Full Text] [Related]

  • 27. An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: time to drop 'one-size-fits-all' hemodynamic targets?
    Ameloot K, Genbrugge C, Meex I, Jans F, Boer W, Vander Laenen M, Ferdinande B, Mullens W, Dupont M, Dens J, DeDeyne C.
    Resuscitation; 2015 May; 90():121-6. PubMed ID: 25769511
    [Abstract] [Full Text] [Related]

  • 28. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation.
    Larsen FS, Olsen KS, Hansen BA, Paulson OB, Knudsen GM.
    Stroke; 1994 Oct; 25(10):1985-8. PubMed ID: 7916502
    [Abstract] [Full Text] [Related]

  • 29. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients.
    Hori D, Hogue C, Adachi H, Max L, Price J, Sciortino C, Zehr K, Conte J, Cameron D, Mandal K.
    Interact Cardiovasc Thorac Surg; 2016 Apr; 22(4):445-51. PubMed ID: 26763042
    [Abstract] [Full Text] [Related]

  • 30. Cerebral autoregulation derived blood pressure targets in elective neurosurgery.
    Beqiri E, García-Orellana M, Politi A, Zeiler FA, Placek MM, Fàbregas N, Tas J, De Sloovere V, Czosnyka M, Aries M, Valero R, de Riva N, Smielewski P.
    J Clin Monit Comput; 2024 Jun; 38(3):649-662. PubMed ID: 38238636
    [Abstract] [Full Text] [Related]

  • 31. Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy.
    Highton D, Ghosh A, Tachtsidis I, Panovska-Griffiths J, Elwell CE, Smith M.
    Anesth Analg; 2015 Jul; 121(1):198-205. PubMed ID: 25993387
    [Abstract] [Full Text] [Related]

  • 32. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury.
    Ono M, Arnaoutakis GJ, Fine DM, Brady K, Easley RB, Zheng Y, Brown C, Katz NM, Grams ME, Hogue CW.
    Crit Care Med; 2013 Feb; 41(2):464-71. PubMed ID: 23263580
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Continuous cerebrovascular reactivity monitoring and autoregulation monitoring identify similar lower limits of autoregulation in patients undergoing cardiopulmonary bypass.
    Blaine Easley R, Kibler KK, Brady KM, Joshi B, Ono M, Brown C, Hogue CW.
    Neurol Res; 2013 May; 35(4):344-54. PubMed ID: 23540403
    [Abstract] [Full Text] [Related]

  • 35. Comparison of different metrics of cerebral autoregulation in association with major morbidity and mortality after cardiac surgery.
    Liu X, Donnelly J, Brady KM, Akiyoshi K, Bush B, Koehler RC, Lee JK, Hogue CW, Czosnyka M, Smielewski P, Brown CH.
    Br J Anaesth; 2022 Jul; 129(1):22-32. PubMed ID: 35597624
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. [Detection of changes in cerebral blood flow and cerebrovascular autoregulation by near-infrared spectroscopy in newborn piglets].
    Huang HJ, Shao XM, Cheng GQ.
    Zhonghua Er Ke Za Zhi; 2007 May; 45(5):349-53. PubMed ID: 17697620
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. The Correlation of Two Cerebral Saturation Monitors With Jugular Bulb Oxygen Saturation in Children Undergoing Cardiopulmonary Bypass for Congenital Heart Surgery.
    Naguib AN, Winch PD, Sebastian R, Gomez D, Guzman L, Rice J, Tumin D, Galantowicz M, Tobias JD.
    J Intensive Care Med; 2017 Dec; 32(10):603-608. PubMed ID: 27530512
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.