These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 33084142
1. Insight into watery saliva proteomes of the grain aphid, Sitobion avenae. Zhang Y, Fu Y, Francis F, Liu X, Chen J. Arch Insect Biochem Physiol; 2021 Jan; 106(1):e21752. PubMed ID: 33084142 [Abstract] [Full Text] [Related]
2. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. Rao SA, Carolan JC, Wilkinson TL. PLoS One; 2013 Jan; 8(2):e57413. PubMed ID: 23460852 [Abstract] [Full Text] [Related]
3. Watery Saliva Secreted by the Grain Aphid Sitobion avenae Stimulates Aphid Resistance in Wheat. Zhang Y, Fan J, Francis F, Chen J. J Agric Food Chem; 2017 Oct 11; 65(40):8798-8805. PubMed ID: 28915349 [Abstract] [Full Text] [Related]
4. Potato aphid salivary proteome: enhanced salivation using resorcinol and identification of aphid phosphoproteins. Chaudhary R, Atamian HS, Shen Z, Briggs SP, Kaloshian I. J Proteome Res; 2015 Apr 03; 14(4):1762-78. PubMed ID: 25722084 [Abstract] [Full Text] [Related]
5. Proteins Identified from Saliva and Salivary Glands of the Chinese Gall Aphid Schlechtendalia chinensis. Yang Z, Ma L, Francis F, Yang Y, Chen H, Wu H, Chen X. Proteomics; 2018 May 03; 18(9):e1700378. PubMed ID: 29577599 [Abstract] [Full Text] [Related]
6. In silico Characterization of a Candidate Protein from Aphid Gelling Saliva with Potential for Aphid Control in Plants. Khan RSA, Ali Z, Niazi AK, Carolan JC, Wilkinson TL. Protein Pept Lett; 2020 May 03; 27(2):158-167. PubMed ID: 31612814 [Abstract] [Full Text] [Related]
7. Salivary Protein Cyclin-Dependent Kinase-like from Grain Aphid Sitobion avenae Suppresses Wheat Defense Response and Enhances Aphid Adaptation. Zhang Y, Liu X, Sun Y, Liu Y, Zhang Y, Ding T, Chen J. Int J Mol Sci; 2024 Apr 23; 25(9):. PubMed ID: 38731798 [Abstract] [Full Text] [Related]
8. Transcriptome analysis of the salivary glands of the grain aphid, Sitobion avenae. Zhang Y, Fan J, Sun J, Francis F, Chen J. Sci Rep; 2017 Nov 21; 7(1):15911. PubMed ID: 29162876 [Abstract] [Full Text] [Related]
9. Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. Nicholson SJ, Puterka GJ. J Proteomics; 2014 Jun 13; 105():186-203. PubMed ID: 24355481 [Abstract] [Full Text] [Related]
10. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. Pavithran S, Murugan M, Mannu J, Yogendra K, Balasubramani V, Sanivarapu H, Harish S, Natesan S. Insect Biochem Mol Biol; 2024 Feb 13; 165():104060. PubMed ID: 38123026 [Abstract] [Full Text] [Related]
11. Comparative analyses of salivary proteins from three aphid species. Vandermoten S, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E, Francis F. Insect Mol Biol; 2014 Feb 13; 23(1):67-77. PubMed ID: 24382153 [Abstract] [Full Text] [Related]
12. Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva. Ma R, Chen JL, Cheng DF, Sun JR. J Agric Food Chem; 2010 Feb 24; 58(4):2410-8. PubMed ID: 20112908 [Abstract] [Full Text] [Related]
13. Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Ferry N, Stavroulakis S, Guan W, Davison GM, Bell HA, Weaver RJ, Down RE, Gatehouse JA, Gatehouse AM. Proteomics; 2011 May 24; 11(10):1985-2002. PubMed ID: 21500340 [Abstract] [Full Text] [Related]
14. Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. Nicholson SJ, Hartson SD, Puterka GJ. J Proteomics; 2012 Apr 03; 75(7):2252-68. PubMed ID: 22348819 [Abstract] [Full Text] [Related]
15. Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae. Abdellatef E, Will T, Koch A, Imani J, Vilcinskas A, Kogel KH. Plant Biotechnol J; 2015 Aug 03; 13(6):849-57. PubMed ID: 25586210 [Abstract] [Full Text] [Related]
16. Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Harmel N, Létocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F. Insect Mol Biol; 2008 Apr 03; 17(2):165-74. PubMed ID: 18353105 [Abstract] [Full Text] [Related]
17. Molecular characterization and gene silencing of Laccase 1 in the grain aphid, Sitobion avenae. Zhang Y, Fan J, Francis F, Chen J. Arch Insect Biochem Physiol; 2018 Apr 03; 97(4):. PubMed ID: 29323436 [Abstract] [Full Text] [Related]
18. Cereal aphids differently affect benzoxazinoid levels in durum wheat. Shavit R, Batyrshina ZS, Dotan N, Tzin V. PLoS One; 2018 Apr 03; 13(12):e0208103. PubMed ID: 30507950 [Abstract] [Full Text] [Related]
19. Genome-Wide Comparative Analysis of the Cytochrome P450 Monooxygenase Family in 19 Aphid Species and Their Expression Analysis in 4 Cereal Crop Aphids. Wang Z, Hao W, Wang H, Deng P, Li T, Wang C, Zhao J, Chen C, Ji W, Liu X. Int J Mol Sci; 2024 Jun 18; 25(12):. PubMed ID: 38928374 [Abstract] [Full Text] [Related]
20. An Aphid Pest Superclone Benefits From a Facultative Bacterial Endosymbiont in a Host-Dependent Manner, Leading to Reproductive and Proteomic Changes. Mahieu L, González-González A, Rubio-Meléndez ME, Moya-Hernández M, Francis F, Ramírez CC. Arch Insect Biochem Physiol; 2024 Oct 18; 117(2):e22154. PubMed ID: 39397367 [Abstract] [Full Text] [Related] Page: [Next] [New Search]