These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 33084750

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Synchronism between Aspidosperma macrocarpon (Apocynaceae) resources allocation and the establishment of the gall inducer Pseudophacopteron sp. (Hemiptera: Psylloidea).
    Castro AC, Oliveira DC, Moreira AS, lsaias RM.
    Rev Biol Trop; 2013 Dec; 61(4):1891-900. PubMed ID: 24432541
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Hemiptera-induced galls of Sapium glandulosum have histological and cytological compartmentalization created with a large amount of carbohydrate.
    Rosa LMP, Silva MS, da Silva Carneiro RG, Machado M, Kuster VC.
    Protoplasma; 2024 May; 261(3):593-606. PubMed ID: 38195894
    [Abstract] [Full Text] [Related]

  • 5. Morphometric analysis of young petiole galls on the narrow-leaf cottonwood, Populus angustifolia, by the sugarbeet root aphid, Pemphigus betae.
    Richardson RA, Body M, Warmund MR, Schultz JC, Appel HM.
    Protoplasma; 2017 Jan; 254(1):203-216. PubMed ID: 26739691
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Morphogenesis of galls induced by Baccharopelma dracunculifoliae (Hemiptera: Psyllidae) on Baccharis dracunculifolia (Asteraceae) leaves.
    Arduin M, Fernandes GW, Kraus JE.
    Braz J Biol; 2005 Nov; 65(4):559-71. PubMed ID: 16532179
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis?
    de Oliveira DC, Isaias RM, Moreira AS, Magalhães TA, de Lemos-Filho JP.
    Plant Sci; 2011 Mar; 180(3):489-95. PubMed ID: 21421396
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae).
    Dias GG, Ferreira BG, Moreira GR, Isaias RM.
    An Acad Bras Cienc; 2013 Mar; 85(1):187-200. PubMed ID: 23538957
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Anatomical profiles validate gall morphospecies under similar morphotypes.
    Teixeira CT, Kuster VC, da Silva Carneiro RG, Cardoso JCF, Dos Santos Isaias RM.
    J Plant Res; 2022 Jul; 135(4):593-608. PubMed ID: 35641669
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Cytological attributes of storage tissues in nematode and eriophyid galls: pectin and hemicellulose functional insights.
    Ferreira BG, Bragança GP, Isaias RMS.
    Protoplasma; 2020 Jan; 257(1):229-244. PubMed ID: 31410590
    [Abstract] [Full Text] [Related]

  • 20. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development.
    Takeda S, Yoza M, Amano T, Ohshima I, Hirano T, Sato MH, Sakamoto T, Kimura S.
    PLoS One; 2019 Jan; 14(10):e0223686. PubMed ID: 31647845
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.