These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
175 related items for PubMed ID: 33089353
1. Exploring changes in bone mass in individuals with a chronic spinal cord injury. El-Kotob R, Craven BC, Thabane L, Papaioannou A, Adachi JD, Giangregorio LM. Osteoporos Int; 2021 Apr; 32(4):759-767. PubMed ID: 33089353 [Abstract] [Full Text] [Related]
3. Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury. Coupaud S, McLean AN, Purcell M, Fraser MH, Allan DB. Bone; 2015 May; 74():69-75. PubMed ID: 25596521 [Abstract] [Full Text] [Related]
4. Patient-specific bone mineral density distribution in the tibia of individuals with chronic spinal cord injury, derived from multi-slice peripheral Quantitative Computed Tomography (pQCT) - A cross-sectional study. Coupaud S, Gislason MK, Purcell M, Sasagawa K, Tanner KE. Bone; 2017 Apr; 97():29-37. PubMed ID: 28034635 [Abstract] [Full Text] [Related]
5. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time. Haider IT, Lobos SM, Simonian N, Schnitzer TJ, Edwards WB. Osteoporos Int; 2018 Dec; 29(12):2703-2715. PubMed ID: 30334093 [Abstract] [Full Text] [Related]
8. Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury. Edwards WB, Schnitzer TJ, Troy KL. Osteoporos Int; 2014 Mar; 25(3):1005-15. PubMed ID: 24190426 [Abstract] [Full Text] [Related]
9. Changes in the structural and material properties of the tibia in patients with spinal cord injury. McCarthy ID, Bloomer Z, Gall A, Keen R, Ferguson-Pell M. Spinal Cord; 2012 Apr; 50(4):333-7. PubMed ID: 22124349 [Abstract] [Full Text] [Related]
10. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT). Frotzler A, Berger M, Knecht H, Eser P. Bone; 2008 Sep; 43(3):549-55. PubMed ID: 18567554 [Abstract] [Full Text] [Related]
11. Bone microarchitectural alterations associated with spinal cord injury: Relation to sex hormones, metabolic factors, and loading. Valderrábano RJ, Pencina K, Shang YV, Echevarria E, Dixon R, Ghattas C, Wilson L, Reid KF, Storer T, Garrahan M, Tedtsen T, Zafonte R, Bouxsein M, Bhasin S. Bone; 2024 Apr; 181():117039. PubMed ID: 38325649 [Abstract] [Full Text] [Related]
17. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. Modlesky CM, Majumdar S, Narasimhan A, Dudley GA. J Bone Miner Res; 2004 Jan; 19(1):48-55. PubMed ID: 14753736 [Abstract] [Full Text] [Related]
18. Bone changes in the lower limbs from participation in an FES rowing exercise program implemented within two years after traumatic spinal cord injury. Lambach RL, Stafford NE, Kolesar JA, Kiratli BJ, Creasey GH, Gibbons RS, Andrews BJ, Beaupre GS. J Spinal Cord Med; 2020 May; 43(3):306-314. PubMed ID: 30475172 [Abstract] [Full Text] [Related]
19. Alteration of Volumetric Bone Mineral Density Parameters in Men with Spinal Cord Injury. Maïmoun L, Gelis A, Serrand C, Mura T, Humbert L, Boudousq V, de Santa-Barbara P, Laux D, Fattal C, Mariano-Goulart D. Calcif Tissue Int; 2023 Sep; 113(3):304-316. PubMed ID: 37353625 [Abstract] [Full Text] [Related]
20. Bone Mineral Loss at the Distal Femur and Proximal Tibia Following Spinal Cord Injury in Men and Women. Mazur CM, Edwards WB, Haider IT, Fang Y, Morse LR, Schnitzer TJ, Simonian N, Troy KL. J Clin Densitom; 2023 Sep; 26(3):101380. PubMed ID: 37201436 [Abstract] [Full Text] [Related] Page: [Next] [New Search]