These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 33092625

  • 21. Long Non-coding RNA XIST May Influence Cervical Ossification of the Posterior Longitudinal Ligament Through Regulation of miR-17-5P/AHNAK/BMP2 Signaling Pathway.
    Liao X, Tang D, Yang H, Chen Y, Chen D, Jia L, Yang L, Chen X.
    Calcif Tissue Int; 2019 Dec; 105(6):670-680. PubMed ID: 31511959
    [Abstract] [Full Text] [Related]

  • 22. The Effect of the NFκB-USP9X-Cx43 Axis on the Dynamic Balance of Bone Formation/Degradation during Ossification of the Posterior Longitudinal Ligament of the Cervical Spine.
    Yuan X, Guo Y, Liu J, Sun J, Shi L, Miao J, Shi J, Chen Y.
    Oxid Med Cell Longev; 2022 Dec; 2022():1604932. PubMed ID: 35391932
    [Abstract] [Full Text] [Related]

  • 23. Dkk1 acts as a negative regulator in the osteogenic differentiation of the posterior longitudinal ligament cells.
    Dong J, Xu X, Zhang Q, Yuan Z, Tan B.
    Cell Biol Int; 2020 Dec; 44(12):2450-2458. PubMed ID: 32827333
    [Abstract] [Full Text] [Related]

  • 24. Ossification of the posterior ligament is mediated by osterix via inhibition of the β-catenin signaling pathway.
    Shi L, Cai G, Shi J, Guo Y, Chen D, Chen D, Yang H.
    Exp Cell Res; 2016 Nov 15; 349(1):53-59. PubMed ID: 27693496
    [Abstract] [Full Text] [Related]

  • 25. [MicroRNA-563 promotes the osteogenic differentiation of posterior longitudinal ligament cells by inhibiting SMURF1].
    Zhang H, Xu C, Liu Y, Yuan W.
    Zhonghua Wai Ke Za Zhi; 2017 Mar 01; 55(3):203-207. PubMed ID: 28241722
    [Abstract] [Full Text] [Related]

  • 26. Insulin potentiates the proliferation and bone morphogenetic protein-2-induced osteogenic differentiation of rat spinal ligament cells via extracellular signal-regulated kinase and phosphatidylinositol 3-kinase.
    Li H, Liu D, Zhao CQ, Jiang LS, Dai LY.
    Spine (Phila Pa 1976); 2008 Oct 15; 33(22):2394-402. PubMed ID: 18923314
    [Abstract] [Full Text] [Related]

  • 27. Roles and mechanisms of leptin in osteogenic stimulation in cervical ossification of the posterior longitudinal ligament.
    Feng B, Cao S, Zhai J, Ren Y, Hu J, Tian Y, Weng X.
    J Orthop Surg Res; 2018 Jul 03; 13(1):165. PubMed ID: 29970120
    [Abstract] [Full Text] [Related]

  • 28. Inhibitory effect of YQHYRJ recipe on osteoblast differentiation induced by BMP-2 in fibroblasts from posterior longitudinal ligament of mice.
    Bian Q, Jia K, Liu SF, Shu B, Liang QQ, Zhou CJ, Zhou Q, Wang YJ.
    Pharmazie; 2011 Oct 03; 66(10):784-90. PubMed ID: 22026161
    [Abstract] [Full Text] [Related]

  • 29. P2Y1 transient overexpression induced mineralization in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament of the cervical spine.
    Tanaka S, Kudo H, Asari T, Ono A, Motomura S, Toh S, Furukawa K.
    Calcif Tissue Int; 2011 Apr 03; 88(4):263-71. PubMed ID: 21210088
    [Abstract] [Full Text] [Related]

  • 30. Expression Analysis of Susceptibility Genes for Ossification of the Posterior Longitudinal Ligament of the Cervical Spine in Human OPLL-related Tissues and a Spinal Hyperostotic Mouse (ttw/ttw).
    Nakajima H, Watanabe S, Honjoh K, Okawa A, Matsumoto M, Matsumine A.
    Spine (Phila Pa 1976); 2020 Nov 15; 45(22):E1460-E1468. PubMed ID: 32756283
    [Abstract] [Full Text] [Related]

  • 31. Integrin αVβ3 antagonist-c(RGDyk) peptide attenuates the progression of ossification of the posterior longitudinal ligament by inhibiting osteogenesis and angiogenesis.
    Geng X, Tang Y, Gu C, Zeng J, Zhao Y, Zhou Q, Jia L, Zhou S, Chen X.
    Mol Med; 2024 May 02; 30(1):57. PubMed ID: 38698308
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Endoplasmic reticulum stress regulates mechanical stress-induced ossification of posterior longitudinal ligament.
    Shi L, Miao J, Chen D, Shi J, Chen Y.
    Eur Spine J; 2019 Oct 02; 28(10):2249-2256. PubMed ID: 31325051
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Long non-coding RNA MALAT1 functions as miR-1 sponge to regulate Connexin 43-mediated ossification of the posterior longitudinal ligament.
    Yuan X, Guo Y, Chen D, Luo Y, Chen D, Miao J, Chen Y.
    Bone; 2019 Oct 02; 127():305-314. PubMed ID: 31280017
    [Abstract] [Full Text] [Related]

  • 38. Genetic polymorphisms in bone morphogenetic protein receptor type IA gene predisposes individuals to ossification of the posterior longitudinal ligament of the cervical spine via the smad signaling pathway.
    Wang H, Jin W, Li H.
    BMC Musculoskelet Disord; 2018 Feb 20; 19(1):61. PubMed ID: 29458345
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. DLX5 regulates the osteogenic differentiation of spinal ligaments cells derived from ossification of the posterior longitudinal ligament patients via NOTCH signaling.
    Tang T, Zhu Z, He Z, Wang F, Chen H, Liu S, Zhan M, Wang J, Tian W, Chen D, Wu X, Liu X, Zhou Z, Liu S.
    JOR Spine; 2023 Jun 20; 6(2):e1247. PubMed ID: 37361333
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.