These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 33092991

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity.
    Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K.
    Plant Physiol; 2004 Jul; 135(3):1502-13. PubMed ID: 15247372
    [Abstract] [Full Text] [Related]

  • 3. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.).
    Zhao H, Ma T, Wang X, Deng Y, Ma H, Zhang R, Zhao J.
    Plant Cell Environ; 2015 Nov; 38(11):2208-22. PubMed ID: 25311360
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1.
    Zhang S, Wang S, Xu Y, Yu C, Shen C, Qian Q, Geisler M, Jiang de A, Qi Y.
    Plant Cell Environ; 2015 Apr; 38(4):638-54. PubMed ID: 24995795
    [Abstract] [Full Text] [Related]

  • 8. Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus x H. tuberosus.
    Chiappetta A, Fambrini M, Petrarulo M, Rapparini F, Michelotti V, Bruno L, Greco M, Baraldi R, Salvini M, Pugliesi C, Bitonti MB.
    Ann Bot; 2009 Mar; 103(5):735-47. PubMed ID: 19151043
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Ectopic Expression of WINDING 1 Leads to Asymmetrical Distribution of Auxin and a Spiral Phenotype in Rice.
    Cheng ML, Lo SF, Hsiao AS, Hong YF, Yu SM, Ho TD.
    Plant Cell Physiol; 2017 Sep 01; 58(9):1494-1506. PubMed ID: 28922746
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4.
    Liu H, Guo S, Xu Y, Li C, Zhang Z, Zhang D, Xu S, Zhang C, Chong K.
    Plant Physiol; 2014 May 01; 165(1):160-74. PubMed ID: 24596329
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078.
    Tang Y, Zhao CY, Tan ST, Xue HW.
    PLoS Genet; 2016 Aug 01; 12(8):e1006252. PubMed ID: 27529511
    [Abstract] [Full Text] [Related]

  • 20. A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis.
    Tameshige T, Okamoto S, Lee JS, Aida M, Tasaka M, Torii KU, Uchida N.
    Curr Biol; 2016 Sep 26; 26(18):2478-2485. PubMed ID: 27593376
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.