These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
316 related items for PubMed ID: 33096606
1. Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in T. turgidum-Regulatory Networks of Grain Development and Abiotic Stress Response. Liu H, Able AJ, Able JA. Int J Mol Sci; 2020 Oct 21; 21(20):. PubMed ID: 33096606 [Abstract] [Full Text] [Related]
2. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat. Liu H, Able AJ, Able JA. Int J Mol Sci; 2020 Aug 21; 21(17):. PubMed ID: 32825615 [Abstract] [Full Text] [Related]
3. Small RNA, Transcriptome and Degradome Analysis of the Transgenerational Heat Stress Response Network in Durum Wheat. Liu H, Able AJ, Able JA. Int J Mol Sci; 2021 May 24; 22(11):. PubMed ID: 34073862 [Abstract] [Full Text] [Related]
4. Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress. Liu H, Searle IR, Watson-Haigh NS, Baumann U, Mather DE, Able AJ, Able JA. PLoS One; 2015 May 24; 10(11):e0142799. PubMed ID: 26562166 [Abstract] [Full Text] [Related]
5. Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat. Liu H, Able AJ, Able JA. Sci Rep; 2021 Feb 11; 11(1):3613. PubMed ID: 33574419 [Abstract] [Full Text] [Related]
8. Development-associated microRNAs in grains of wheat (Triticum aestivum L.). Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y. BMC Plant Biol; 2013 Sep 23; 13():140. PubMed ID: 24060047 [Abstract] [Full Text] [Related]
11. Identification of miRNAs and Their Target Genes Involved in Cucumber Fruit Expansion Using Small RNA and Degradome Sequencing. Sun Y, Luo W, Chang H, Li Z, Zhou J, Li X, Zheng J, Hao M. Biomolecules; 2019 Sep 12; 9(9):. PubMed ID: 31547414 [Abstract] [Full Text] [Related]
12. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses. Makhloufi E, Yousfi FE, Marande W, Mila I, Hanana M, Bergès H, Mzid R, Bouzayen M. J Exp Bot; 2014 Dec 12; 65(22):6359-71. PubMed ID: 25205575 [Abstract] [Full Text] [Related]
13. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. Gao C, Wang P, Zhao S, Zhao C, Xia H, Hou L, Ju Z, Zhang Y, Li C, Wang X. BMC Genomics; 2017 Mar 02; 18(1):220. PubMed ID: 28253861 [Abstract] [Full Text] [Related]
14. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence. Qin J, Ma X, Yi Z, Tang Z, Meng Y. Plant Biol (Stuttg); 2016 Mar 02; 18(2):197-205. PubMed ID: 26206233 [Abstract] [Full Text] [Related]
15. Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Akpinar BA, Kantar M, Budak H. Funct Integr Genomics; 2015 Sep 02; 15(5):587-98. PubMed ID: 26174050 [Abstract] [Full Text] [Related]
17. Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum tuberosum L.) response to alkali stress. Kang Y, Yang X, Liu Y, Shi M, Zhang W, Fan Y, Yao Y, Zhang J, Qin S. Int J Biol Macromol; 2021 Jul 01; 182():938-949. PubMed ID: 33878362 [Abstract] [Full Text] [Related]
20. Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain characteristics and the response to nitrogen levels. Hou G, Du C, Gao H, Liu S, Sun W, Lu H, Kang J, Xie Y, Ma D, Wang C. BMC Plant Biol; 2020 Feb 27; 20(1):87. PubMed ID: 32103721 [Abstract] [Full Text] [Related] Page: [Next] [New Search]