These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 33099003
61. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Zhong H, Yin H. Redox Biol; 2015; 4():193-9. PubMed ID: 25598486 [Abstract] [Full Text] [Related]
62. Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, Aitken RJ. Mol Hum Reprod; 2015 Jun; 21(6):502-15. PubMed ID: 25837702 [Abstract] [Full Text] [Related]
63. Elastin aging and lipid oxidation products in human aorta. Zarkovic K, Larroque-Cardoso P, Pucelle M, Salvayre R, Waeg G, Nègre-Salvayre A, Zarkovic N. Redox Biol; 2015 Jun; 4():109-17. PubMed ID: 25553420 [Abstract] [Full Text] [Related]
64. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Xiao M, Zhong H, Xia L, Tao Y, Yin H. Free Radic Biol Med; 2017 Oct; 111():316-327. PubMed ID: 28456642 [Abstract] [Full Text] [Related]
65. Lipid peroxidation and its toxicological implications. Nam TG. Toxicol Res; 2011 Mar; 27(1):1-6. PubMed ID: 24278542 [Abstract] [Full Text] [Related]
66. Measurement of lipid peroxidation. Moore K, Roberts LJ. Free Radic Res; 1998 Jun; 28(6):659-71. PubMed ID: 9736317 [Abstract] [Full Text] [Related]
67. Oxidized LDL and 4-hydroxynonenal modulate tyrosine kinase receptor activity. Negre-Salvayre A, Vieira O, Escargueil-Blanc I, Salvayre R. Mol Aspects Med; 2003 Jun; 24(4-5):251-61. PubMed ID: 12893003 [Abstract] [Full Text] [Related]
68. Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation-modification of proteins in vitro: identification of N(τ)-(3-propanal)histidine as the major adduct. Maeshima T, Honda K, Chikazawa M, Shibata T, Kawai Y, Akagawa M, Uchida K. Chem Res Toxicol; 2012 Jul 16; 25(7):1384-92. PubMed ID: 22716039 [Abstract] [Full Text] [Related]
69. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? Domingues RM, Domingues P, Melo T, Pérez-Sala D, Reis A, Spickett CM. J Proteomics; 2013 Oct 30; 92():110-31. PubMed ID: 23770299 [Abstract] [Full Text] [Related]
70. Lipid Peroxidation-Derived Aldehydes, 4-Hydroxynonenal and Malondialdehyde in Aging-Related Disorders. Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, Giordano G, Cucci MA, Graf M, Gentile F. Antioxidants (Basel); 2018 Jul 30; 7(8):. PubMed ID: 30061536 [Abstract] [Full Text] [Related]
71. Isolevuglandins Scavenger Ameliorates Myocardial Ischemic Injury by Suppressing Oxidative Stress, Apoptosis, and Inflammation. Guo J, Xu F, Ji H, Jing Y, Shen L, Weng X, Hu L. Front Cell Dev Biol; 2022 Jul 30; 10():836035. PubMed ID: 35356291 [Abstract] [Full Text] [Related]
72. Electrophilic reactive aldehydes as a therapeutic target in colorectal cancer prevention and treatment. Gobert AP, Asim M, Smith TM, Williams KJ, Barry DP, Allaman MM, McNamara KM, Hawkins CV, Delgado AG, Zhao S, Piazuelo MB, Washington MK, Coburn LA, Rathmacher JA, Wilson KT. Oncogene; 2023 May 30; 42(20):1685-1691. PubMed ID: 37037901 [Abstract] [Full Text] [Related]
73. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. Free Radic Biol Med; 2020 Sep 30; 157():128-153. PubMed ID: 31756524 [Abstract] [Full Text] [Related]
74. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Antioxid Redox Signal; 2021 Jan 01; 34(1):49-98. PubMed ID: 32640910 [Abstract] [Full Text] [Related]
75. Formation of highly reactive gamma-ketoaldehydes (neuroketals) as products of the neuroprostane pathway. Bernoud-Hubac N, Davies SS, Boutaud O, Montine TJ, Roberts LJ. J Biol Chem; 2001 Aug 17; 276(33):30964-70. PubMed ID: 11413140 [Abstract] [Full Text] [Related]
76. Role of 4-hydroxynonenal-protein adducts in human diseases. Barrera G, Pizzimenti S, Ciamporcero ES, Daga M, Ullio C, Arcaro A, Cetrangolo GP, Ferretti C, Dianzani C, Lepore A, Gentile F. Antioxid Redox Signal; 2015 Jun 20; 22(18):1681-702. PubMed ID: 25365742 [Abstract] [Full Text] [Related]
77. 4-Hydroxynonenal-protein adducts: A reliable biomarker of lipid oxidation in liver diseases. Poli G, Biasi F, Leonarduzzi G. Mol Aspects Med; 2008 Jun 20; 29(1-2):67-71. PubMed ID: 18158180 [Abstract] [Full Text] [Related]
78. Lipoxidation in cardiovascular diseases. Gianazza E, Brioschi M, Fernandez AM, Banfi C. Redox Biol; 2019 May 20; 23():101119. PubMed ID: 30833142 [Abstract] [Full Text] [Related]
79. Mass spectrometric characterization of modifications to angiotensin II by lipid peroxidation products, 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal. Lee SH, Takahashi R, Goto T, Oe T. Chem Res Toxicol; 2010 Nov 15; 23(11):1771-85. PubMed ID: 20977208 [Abstract] [Full Text] [Related]
80. DNA damage caused by lipid peroxidation products. Łuczaj W, Skrzydlewska E. Cell Mol Biol Lett; 2003 Nov 15; 8(2):391-413. PubMed ID: 12813574 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]