These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 33099139
1. Interactive effect of compost application and inoculation with the fungus Claroideoglomus claroideum in Oenothera picensis plants growing in mine tailings. Pérez R, Tapia Y, Antilén M, Casanova M, Vidal C, Santander C, Aponte H, Cornejo P. Ecotoxicol Environ Saf; 2021 Jan 15; 208():111495. PubMed ID: 33099139 [Abstract] [Full Text] [Related]
2. Beneficial Interactive Effects Provided by an Arbuscular Mycorrhizal Fungi and Yeast on the Growth of Oenothera picensis Established on Cu Mine Tailings. Pérez R, Tapia Y, Antilén M, Ruiz A, Pimentel P, Santander C, Aponte H, González F, Cornejo P. Plants (Basel); 2023 Nov 29; 12(23):. PubMed ID: 38068648 [Abstract] [Full Text] [Related]
3. Effect of compost and biodegradable chelate addition on phytoextraction of copper by Oenothera picensis grown in Cu-contaminated acid soils. González I, Neaman A, Cortés A, Rubio P. Chemosphere; 2014 Jan 29; 95():111-5. PubMed ID: 24034893 [Abstract] [Full Text] [Related]
4. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM. Sci Total Environ; 2011 Feb 15; 409(6):1009-16. PubMed ID: 21211826 [Abstract] [Full Text] [Related]
6. Earthworms and mycorrhization increase copper phytoextraction by Canavalia ensiformis in sandy soil. Santana NA, Ferreira PAA, Tarouco CP, Schardong IS, Antoniolli ZI, Nicoloso FT, Jacques RJS. Ecotoxicol Environ Saf; 2019 Oct 30; 182():109383. PubMed ID: 31260919 [Abstract] [Full Text] [Related]
7. Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. González-Chávez MD, Carrillo-González R, Hernández Godínez MI, Evangelista Lozano S. Int J Phytoremediation; 2017 Feb 30; 19(2):174-182. PubMed ID: 27408989 [Abstract] [Full Text] [Related]
8. Effect of Different Amendments on Growing of Canna indica L. Inoculated with AMF on Mining Substrate. El Faiz A, Duponnois R, Winterton P, Ouhammou A, Meddich A, Boularbah A, Hafidi M. Int J Phytoremediation; 2015 Feb 30; 17(1-6):503-13. PubMed ID: 25495941 [Abstract] [Full Text] [Related]
9. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M. Environ Sci Pollut Res Int; 2015 Sep 30; 22(17):13179-93. PubMed ID: 25929455 [Abstract] [Full Text] [Related]
10. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Chen BD, Zhu YG, Duan J, Xiao XY, Smith SE. Environ Pollut; 2007 May 30; 147(2):374-80. PubMed ID: 16764975 [Abstract] [Full Text] [Related]
11. The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. Gu HH, Zhou Z, Gao YQ, Yuan XT, Ai YJ, Zhang JY, Zuo WZ, Taylor AA, Nan SQ, Li FP. Int J Phytoremediation; 2017 Aug 03; 19(8):739-745. PubMed ID: 28537795 [Abstract] [Full Text] [Related]
12. Influence of mycorrhiza and fly ash on the survival, growth and heavy metal accumulation in three Acacia species grown in Cu-Ni mine soil. Ultra VU, Manyiwa T. Environ Geochem Health; 2021 Apr 03; 43(4):1337-1353. PubMed ID: 32591945 [Abstract] [Full Text] [Related]
15. Evaluation of metal mobility from copper mine tailings in northern Chile. Lam EJ, Gálvez ME, Cánovas M, Montofré IL, Rivero D, Faz A. Environ Sci Pollut Res Int; 2016 Jun 03; 23(12):11901-15. PubMed ID: 26957432 [Abstract] [Full Text] [Related]
16. Availability of copper in mine tailings with humic substance addition and uptake by Atriplex halimus. Tapia Y, Casanova M, Castillo B, Acuña E, Covarrubias J, Antilén M, Masaguer A. Environ Monit Assess; 2019 Oct 18; 191(11):651. PubMed ID: 31628547 [Abstract] [Full Text] [Related]
17. Remediation of copper-contaminated soils using Tagetes patula L., earthworms and arbuscular mycorrhizal fungi. Fu L, Zhang L, Dong P, Wang J, Shi L, Lian C, Shen Z, Chen Y. Int J Phytoremediation; 2022 Oct 18; 24(10):1107-1119. PubMed ID: 34775850 [Abstract] [Full Text] [Related]
18. Effects of three biochars on copper immobilization and soil microbial communities in a metal-contaminated soil using a metallophyte and two agricultural plants. Meier S, Moore F, González ME, Medina J, Campos P, Khan N, Cumming J, Sanhueza M, Mejías J, Morales A, Hirzel J, Seguel A. Environ Geochem Health; 2021 Apr 18; 43(4):1441-1456. PubMed ID: 31599372 [Abstract] [Full Text] [Related]
19. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation. Pardo T, Bes C, Bernal MP, Clemente R. Environ Toxicol Chem; 2016 Nov 18; 35(11):2874-2884. PubMed ID: 27019401 [Abstract] [Full Text] [Related]
20. Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites. Guo P, Wang T, Liu Y, Xia Y, Wang G, Shen Z, Chen Y. Environ Sci Pollut Res Int; 2014 Jan 18; 21(1):631-40. PubMed ID: 23818072 [Abstract] [Full Text] [Related] Page: [Next] [New Search]