These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Groundwater salinity modeling and mapping using machine learning approaches: a case study in Sidi Okba region, Algeria. Boudibi S, Fadlaoui H, Hiouani F, Bouzidi N, Aissaoui A, Khomri ZE. Environ Sci Pollut Res Int; 2024 Aug; 31(36):48955-48971. PubMed ID: 39042194 [Abstract] [Full Text] [Related]
9. Spatial modeling of land subsidence using machine learning models and statistical methods. Sekkeravani MA, Bazrafshan O, Pourghasemi HR, Holisaz A. Environ Sci Pollut Res Int; 2022 Apr; 29(19):28866-28883. PubMed ID: 34993808 [Abstract] [Full Text] [Related]
10. Towards the Improvement of Soil Salinity Mapping in a Data-Scarce Context Using Sentinel-2 Images in Machine-Learning Models. Sirpa-Poma JW, Satgé F, Resongles E, Pillco-Zolá R, Molina-Carpio J, Flores Colque MG, Ormachea M, Pacheco Mollinedo P, Bonnet MP. Sensors (Basel); 2023 Nov 22; 23(23):. PubMed ID: 38067701 [Abstract] [Full Text] [Related]
11. Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling. Pourghasemi HR, Gayen A, Lasaponara R, Tiefenbacher JP. Environ Res; 2020 May 22; 184():109321. PubMed ID: 32199317 [Abstract] [Full Text] [Related]
13. A machine learning framework for spatio-temporal vulnerability mapping of groundwaters to nitrate in a data scarce region in Lenjanat Plain, Iran. Jalali R, Tishehzan P, Hashemi H. Environ Sci Pollut Res Int; 2024 Jun 22; 31(29):42088-42110. PubMed ID: 38862797 [Abstract] [Full Text] [Related]
15. Scrutinization of land subsidence rate using a supportive predictive model: Incorporating radar interferometry and ensemble soft-computing. Choubin B, Shirani K, Hosseini FS, Taheri J, Rahmati O. J Environ Manage; 2023 Nov 01; 345():118685. PubMed ID: 37517093 [Abstract] [Full Text] [Related]
16. Habitat potential modelling and mapping of Teucrium polium using machine learning techniques. Rahmanian S, Pourghasemi HR, Pouyan S, Karami S. Environ Monit Assess; 2021 Oct 30; 193(11):759. PubMed ID: 34718878 [Abstract] [Full Text] [Related]
17. Soil salinity prediction using hybrid machine learning and remote sensing in Ben Tre province on Vietnam's Mekong River Delta. Nguyen HD, Van CP, Nguyen TG, Dang DK, Pham TTN, Nguyen QH, Bui QT. Environ Sci Pollut Res Int; 2023 Jun 30; 30(29):74340-74357. PubMed ID: 37204580 [Abstract] [Full Text] [Related]
18. Spatial prediction of groundwater salinity in multiple aquifers of the Mekong Delta region using explainable machine learning models. Jeong H, Abbas A, Kim HG, Van Hoan H, Van Tuan P, Long PT, Lee E, Cho KH. Water Res; 2024 Nov 15; 266():122404. PubMed ID: 39276478 [Abstract] [Full Text] [Related]
20. Application of novel framework approach for prediction of nitrate concentration susceptibility in coastal multi-aquifers, Bangladesh. Islam ARMT, Pal SC, Chowdhuri I, Salam R, Islam MS, Rahman MM, Zahid A, Idris AM. Sci Total Environ; 2021 Dec 20; 801():149811. PubMed ID: 34467937 [Abstract] [Full Text] [Related] Page: [Next] [New Search]