These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 331007

  • 21. Regulation by heme of sterol uptake in Saccharomyces cerevisiae.
    Shinabarger DL, Keesler GA, Parks LW.
    Steroids; 1989; 53(3-5):607-23. PubMed ID: 2678610
    [Abstract] [Full Text] [Related]

  • 22. [Regulation role of sterol C-24 methyltransferase and sterol C-8 isomerase in the ergosterol biosynthesis of Saccharomyces cerevisiae].
    Zhang Z, He X, Li W, Lu Y, Wang Z, Zhang B.
    Wei Sheng Wu Xue Bao; 2009 Aug; 49(8):1063-8. PubMed ID: 19835168
    [Abstract] [Full Text] [Related]

  • 23. Physiological implications of sterol biosynthesis in yeast.
    Parks LW, Casey WM.
    Annu Rev Microbiol; 1995 Aug; 49():95-116. PubMed ID: 8561481
    [Abstract] [Full Text] [Related]

  • 24. Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms.
    Davies BS, Wang HS, Rine J.
    Mol Cell Biol; 2005 Aug; 25(16):7375-85. PubMed ID: 16055745
    [Abstract] [Full Text] [Related]

  • 25. Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae.
    Wagner A, Grillitsch K, Leitner E, Daum G.
    Biochim Biophys Acta; 2009 Feb; 1791(2):118-24. PubMed ID: 19111628
    [Abstract] [Full Text] [Related]

  • 26. The Role of LAM Genes in the Pheromone-Induced Cell Death of S. cerevisiae Yeast.
    Sokolov SS, Galkina KV, Litvinova EA, Knorre DA, Severin FF.
    Biochemistry (Mosc); 2020 Mar; 85(3):300-309. PubMed ID: 32564734
    [Abstract] [Full Text] [Related]

  • 27. Evidence for facilitated transport in the absorption of sterols by Saccharomyces cerevisiae.
    Nes WR, Dhanuka IC, Pinto WJ.
    Lipids; 1986 Jan; 21(1):102-6. PubMed ID: 3515094
    [Abstract] [Full Text] [Related]

  • 28. Sterols in erg mutants of Phycomyces: metabolic pathways and physiological effects.
    Barrero AF, Oltra JE, Robinson J, Burke PV, Jiménez D, Oliver E.
    Steroids; 2002 Apr; 67(5):403-9. PubMed ID: 11958798
    [Abstract] [Full Text] [Related]

  • 29. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene.
    Gollub EG, Liu KP, Dayan J, Adlersberg M, Sprinson DB.
    J Biol Chem; 1977 May 10; 252(9):2846-54. PubMed ID: 323256
    [Abstract] [Full Text] [Related]

  • 30. Identification of a consensus motif in Erg28p required for C-4 demethylation in yeast ergosterol biosynthesis based on mutation analysis.
    Ke X, Xia XY, Zheng RC, Zheng YG.
    FEMS Microbiol Lett; 2018 Mar 01; 365(5):. PubMed ID: 29319811
    [Abstract] [Full Text] [Related]

  • 31. 8(9),22 -Ergostadiene-3 -ol, an ergosterol precursor accumulated in wild-type and mutants of yeast.
    Parks LW, Bond FT, Thompson ED, Starr PR.
    J Lipid Res; 1972 May 01; 13(3):311-6. PubMed ID: 4554459
    [Abstract] [Full Text] [Related]

  • 32. Yeast mutants blocked in removing the methyl group of lanosterol at C-14. Separation of sterols by high-pressure liquid chromatography.
    Trocha PJ, Jasne SJ, Sprinson DB.
    Biochemistry; 1977 Oct 18; 16(21):4721-6. PubMed ID: 334248
    [Abstract] [Full Text] [Related]

  • 33. Nature of sterols affects plasma membrane behavior and yeast survival during dehydration.
    Dupont S, Beney L, Ferreira T, Gervais P.
    Biochim Biophys Acta; 2011 Jun 18; 1808(6):1520-8. PubMed ID: 21081111
    [Abstract] [Full Text] [Related]

  • 34. Effect of sterol composition on the activity of the yeast G-protein-coupled receptor Ste2.
    Morioka S, Shigemori T, Hara K, Morisaka H, Kuroda K, Ueda M.
    Appl Microbiol Biotechnol; 2013 May 18; 97(9):4013-20. PubMed ID: 23053114
    [Abstract] [Full Text] [Related]

  • 35. The SAGA complex, together with transcription factors and the endocytic protein Rvs167p, coordinates the reprofiling of gene expression in response to changes in sterol composition in Saccharomyces cerevisiae.
    Dewhurst-Maridor G, Abegg D, David FPA, Rougemont J, Scott CC, Adibekian A, Riezman H.
    Mol Biol Cell; 2017 Oct 01; 28(20):2637-2649. PubMed ID: 28768829
    [Abstract] [Full Text] [Related]

  • 36. An essential fungal growth factor derived from ergosterol: a new end product of sterol biosynthesis in fungi?
    Parks LW, Rodriguez RJ, Low C.
    Lipids; 1986 Jan 01; 21(1):89-91. PubMed ID: 3515097
    [Abstract] [Full Text] [Related]

  • 37. Yeast mutant requiring only a sterol as growth supplement.
    Karst F, Lacroute F.
    Biochem Biophys Res Commun; 1974 Jul 10; 59(1):370-6. PubMed ID: 4601817
    [No Abstract] [Full Text] [Related]

  • 38. Efflux-mediated resistance to fluconazole could be modulated by sterol homeostasis in Saccharomyces cerevisiae.
    Kontoyiannis DP.
    J Antimicrob Chemother; 2000 Aug 10; 46(2):199-203. PubMed ID: 10933641
    [Abstract] [Full Text] [Related]

  • 39. Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans.
    Bard M, Lees ND, Turi T, Craft D, Cofrin L, Barbuch R, Koegel C, Loper JC.
    Lipids; 1993 Nov 10; 28(11):963-7. PubMed ID: 8277826
    [Abstract] [Full Text] [Related]

  • 40. Effects of sterol alterations on nystatin sensitivity in Saccharomyces cerevisiae.
    Richman-Boytas CM, Parks LW.
    Microbios; 1989 Nov 10; 59(239):101-11. PubMed ID: 2682140
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.