These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 33114534
1. Comparison of Whole and Gutted Baltic Herring as a Raw Material for Restructured Fish Product Produced by High-Moisture Extrusion Cooking. Nisov A, Aisala H, Holopainen-Mantila U, Alakomi HL, Nordlund E, Honkapää K. Foods; 2020 Oct 26; 9(11):. PubMed ID: 33114534 [Abstract] [Full Text] [Related]
2. Characterization of Microbiological Quality of Whole and Gutted Baltic Herring. Huotari J, Tsitko I, Honkapää K, Alakomi HL. Foods; 2022 Feb 09; 11(4):. PubMed ID: 35205969 [Abstract] [Full Text] [Related]
3. Effects of gutting and ungutting on microbiological, chemical, and sensory properties of aquacultured sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) stored in ice. Cakli S, Kilinc B, Cadun A, Dincer T, Tolasa S. Crit Rev Food Sci Nutr; 2006 Feb 09; 46(7):519-27. PubMed ID: 16954060 [Abstract] [Full Text] [Related]
4. Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. Samard S, Gu BY, Ryu GH. J Sci Food Agric; 2019 Aug 30; 99(11):4922-4931. PubMed ID: 30950073 [Abstract] [Full Text] [Related]
5. Development and Characterization of Extrudates Based on Rapeseed and Pea Protein Blends Using High-Moisture Extrusion Cooking. Zahari I, Ferawati F, Purhagen JK, Rayner M, Ahlström C, Helstad A, Östbring K. Foods; 2021 Oct 09; 10(10):. PubMed ID: 34681446 [Abstract] [Full Text] [Related]
6. Biochemical, textural, microbiological and sensory attributes of gutted and ungutted sutchi catfish (Pangasianodon hypophthalmus) stored in ice. Viji P, Tanuja S, Ninan G, Lalitha KV, Zynudheen AA, Binsi PK, Srinivasagopal TK. J Food Sci Technol; 2015 Jun 09; 52(6):3312-21. PubMed ID: 26028712 [Abstract] [Full Text] [Related]
7. High moisture extrusion of lupin protein: influence of extrusion parameters on extruder responses and product properties. Palanisamy M, Franke K, Berger RG, Heinz V, Töpfl S. J Sci Food Agric; 2019 Mar 30; 99(5):2175-2185. PubMed ID: 30302760 [Abstract] [Full Text] [Related]
8. Rheological properties of dry-fractionated mung bean protein and structural, textural, and rheological evaluation of meat analogues produced by high-moisture extrusion cooking. De Angelis D, Opaluwa C, Pasqualone A, Karbstein HP, Summo C. Curr Res Food Sci; 2023 Mar 30; 7():100552. PubMed ID: 37575131 [Abstract] [Full Text] [Related]
9. High moisture extrusion cooking of meat analogs: A review of mechanisms of protein texturization. Schmid EM, Farahnaky A, Adhikari B, Torley PJ. Compr Rev Food Sci Food Saf; 2022 Nov 30; 21(6):4573-4609. PubMed ID: 36120912 [Abstract] [Full Text] [Related]
10. High moisture extrusion cooking on soy proteins: Importance influence of gums on promoting the fiber formation. Dou W, Zhang X, Zhao Y, Zhang Y, Jiang L, Sui X. Food Res Int; 2022 Jun 30; 156():111189. PubMed ID: 35651098 [Abstract] [Full Text] [Related]
11. Effect of pH and temperature on fibrous structure formation of plant proteins during high-moisture extrusion processing. Nisov A, Nikinmaa M, Nordlund E, Sozer N. Food Res Int; 2022 Jun 30; 156():111089. PubMed ID: 35650994 [Abstract] [Full Text] [Related]
12. Blending Proteins in High Moisture Extrusion to Design Meat Analogues: Rheological Properties, Morphology Development and Product Properties. Wittek P, Karbstein HP, Emin MA. Foods; 2021 Jun 30; 10(7):. PubMed ID: 34209076 [Abstract] [Full Text] [Related]
13. Extrusion cooking of immature rice grain: under-utilized by-product of rice milling process. Albayrak BB, Tuncel NB, Yılmaz Tuncel N, Masatcıoğlu MT. J Food Sci Technol; 2020 Aug 30; 57(8):2905-2915. PubMed ID: 32624596 [Abstract] [Full Text] [Related]
14. Stability of goji bioactives during extrusion cooking process. Kosińska-Cagnazzo A, Bocquel D, Marmillod I, Andlauer W. Food Chem; 2017 Sep 01; 230():250-256. PubMed ID: 28407908 [Abstract] [Full Text] [Related]
15. Physical and functional properties of arrowroot starch extrudates. Jyothi AN, Sheriff JT, Sajeev MS. J Food Sci; 2009 Mar 01; 74(2):E97-104. PubMed ID: 19323747 [Abstract] [Full Text] [Related]
17. Utilizing Haematococcus pluvialis to simulate animal meat color in high-moisture meat analogues: Texture quality and color stability. Huang Z, Liu Y, An H, Kovacs Z, Abddollahi M, Sun Z, Zhang G, Li C. Food Res Int; 2024 Jan 01; 175():113685. PubMed ID: 38128978 [Abstract] [Full Text] [Related]
18. High Moisture Extrusion of Soy Protein: Investigations on the Formation of Anisotropic Product Structure. Wittek P, Zeiler N, Karbstein HP, Emin MA. Foods; 2021 Jan 06; 10(1):. PubMed ID: 33418980 [Abstract] [Full Text] [Related]
19. Physicochemical Changes and Resistant-Starch Content of Extruded Cornstarch with and without Storage at Refrigerator Temperatures. Neder-Suárez D, Amaya-Guerra CA, Quintero-Ramos A, Pérez-Carrillo E, Alanís-Guzmán MG, Báez-González JG, García-Díaz CL, Núñez-González MA, Lardizábal-Gutiérrez D, Jiménez-Castro JA. Molecules; 2016 Aug 15; 21(8):. PubMed ID: 27537864 [Abstract] [Full Text] [Related]
20. Effects of formulation, extrusion cooking conditions, and CO₂ injection on the formation of acrylamide in corn extrudates. Masatcioglu MT, Gokmen V, Ng PK, Koksel H. J Sci Food Agric; 2014 Sep 15; 94(12):2562-8. PubMed ID: 24497201 [Abstract] [Full Text] [Related] Page: [Next] [New Search]