These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 33117432
1. Physiological characterization of a new thermotolerant yeast strain isolated during Brazilian ethanol production, and its application in high-temperature fermentation. Prado CD, Mandrujano GPL, Souza JP, Sgobbi FB, Novaes HR, da Silva JPMO, Alves MHR, Eliodório KP, Cunha GCG, Giudici R, Procópio DP, Basso TO, Malavazi I, Cunha AF. Biotechnol Biofuels; 2020; 13():178. PubMed ID: 33117432 [Abstract] [Full Text] [Related]
2. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Choudhary J, Singh S, Nain L. J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231 [Abstract] [Full Text] [Related]
3. Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Costa DA, de Souza CJ, Costa PS, Rodrigues MQ, dos Santos AF, Lopes MR, Genier HL, Silveira WB, Fietto LG. Appl Microbiol Biotechnol; 2014 Apr; 98(8):3829-40. PubMed ID: 24535257 [Abstract] [Full Text] [Related]
4. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. Pandey AK, Kumar M, Kumari S, Kumari P, Yusuf F, Jakeer S, Naz S, Chandna P, Bhatnagar I, Gaur NA. Biotechnol Biofuels; 2019 Apr; 12():40. PubMed ID: 30858877 [Abstract] [Full Text] [Related]
5. Physiological responses contributing to multiple stress tolerance in Pichia kudriavzevii with potential enhancement for ethanol fermentation. Pongcharoen P, Tawong W, Pathaichindachote W, Rod-In W. J Biosci Bioeng; 2024 Oct; 138(4):314-323. PubMed ID: 39098474 [Abstract] [Full Text] [Related]
6. Identification and selection of a new Saccharomyces cerevisiae strain isolated from Brazilian ethanol fermentation process for application in beer production. Lorca Mandujano GP, Alves HC, Prado CD, Martins JGO, Novaes HR, Maia de Oliveira da Silva JP, Teixeira GS, Ohara A, Alves MHR, Pedrino IC, Malavazi I, Paiva de Sousa C, da Cunha AF. Food Microbiol; 2022 May; 103():103958. PubMed ID: 35082075 [Abstract] [Full Text] [Related]
7. Bioprospecting thermotolerant yeasts from distillery effluent and molasses for high-temperature ethanol production. Avchar R, Lanjekar V, Baghela A. J Appl Microbiol; 2022 Feb; 132(2):1134-1151. PubMed ID: 34487585 [Abstract] [Full Text] [Related]
8. Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant Saccharomyces cerevisiae TC-5. Boonchuay P, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P, Watanabe M, Srisupa S, Chaiyaso T. J Fungi (Basel); 2021 Jul 09; 7(7):. PubMed ID: 34356926 [Abstract] [Full Text] [Related]
9. Compost as an untapped niche for thermotolerant yeasts capable of high-temperature ethanol production. Avchar R, Lanjekar V, Dhakephalkar PK, Dagar SS, Baghela A. Lett Appl Microbiol; 2022 Jan 09; 74(1):109-121. PubMed ID: 34714552 [Abstract] [Full Text] [Related]
10. The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. de Souza CJ, Costa DA, Rodrigues MQ, dos Santos AF, Lopes MR, Abrantes AB, dos Santos Costa P, Silveira WB, Passos FM, Fietto LG. Bioresour Technol; 2012 Apr 09; 109():63-9. PubMed ID: 22285296 [Abstract] [Full Text] [Related]
15. Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Pattanakittivorakul S, Lertwattanasakul N, Yamada M, Limtong S. Antonie Van Leeuwenhoek; 2019 Jul 09; 112(7):975-990. PubMed ID: 30666530 [Abstract] [Full Text] [Related]
16. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Remize F, Andrieu E, Dequin S. Appl Environ Microbiol; 2000 Aug 09; 66(8):3151-9. PubMed ID: 10919763 [Abstract] [Full Text] [Related]
17. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Biotechnol Biofuels; 2016 Aug 09; 9():9. PubMed ID: 26766964 [Abstract] [Full Text] [Related]
18. Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. Oberoi HS, Babbar N, Sandhu SK, Dhaliwal SS, Kaur U, Chadha BS, Bhargav VK. J Ind Microbiol Biotechnol; 2012 Apr 09; 39(4):557-66. PubMed ID: 22131104 [Abstract] [Full Text] [Related]
19. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Eglinton JM, Heinrich AJ, Pollnitz AP, Langridge P, Henschke PA, de Barros Lopes M. Yeast; 2002 Mar 15; 19(4):295-301. PubMed ID: 11870853 [Abstract] [Full Text] [Related]
20. Evaluation of thermotolerant and ethanol-tolerant Saccharomyces cerevisiae as an alternative strain for bioethanol production from industrial feedstocks. Kruasuwan W, Puseenam A, Am-In S, Trakarnpaiboon S, Sornlek W, Kocharin K, Jindamorakot S, Tanapongpipat S, Bai FY, Roongsawang N. 3 Biotech; 2023 Jan 15; 13(1):23. PubMed ID: 36573155 [Abstract] [Full Text] [Related] Page: [Next] [New Search]