These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


487 related items for PubMed ID: 33120269

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Water Management Impacts on Chromium Behavior and Uptake by Rice in Paddy Soil with High Geological Background Values.
    Guan Z, Wei R, Liu T, Li J, Ao M, Sun S, Deng T, Wang S, Tang Y, Lin Q, Ni Z, Qiu R.
    Toxics; 2023 May 05; 11(5):. PubMed ID: 37235248
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Increasing soil Mn abundance promotes the dissolution and oxidation of Cr(III) and increases the accumulation of Cr in rice grains.
    Ao M, Deng T, Sun S, Li M, Li J, Liu T, Yan B, Liu WS, Wang G, Jing D, Chao Y, Tang Y, Qiu R, Wang S.
    Environ Int; 2023 May 05; 175():107939. PubMed ID: 37137179
    [Abstract] [Full Text] [Related]

  • 26. Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice.
    Jing F, Chen C, Chen X, Liu W, Wen X, Hu S, Yang Z, Guo B, Xu Y, Yu Q.
    Environ Pollut; 2020 Feb 05; 257():113592. PubMed ID: 31761591
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. [Effects of Water Management on Cadmium Accumulation by Rice (Oryza sativa L.) Growing in Typical Paddy Soil].
    Zhang YT, Tian YB, Huang DY, Zhang Q, Xu C, Zhu HH, Zhu QH.
    Huan Jing Ke Xue; 2021 May 08; 42(5):2512-2521. PubMed ID: 33884822
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Reducing ammonia volatilization from paddy field with rice straw derived biochar.
    Sun X, Zhong T, Zhang L, Zhang K, Wu W.
    Sci Total Environ; 2019 Apr 10; 660():512-518. PubMed ID: 30640118
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag.
    He H, Tam NFY, Yao A, Qiu R, Li WC, Ye Z.
    Chemosphere; 2017 Dec 10; 189():247-254. PubMed ID: 28942250
    [Abstract] [Full Text] [Related]

  • 38. Arsenic accumulation in rice: Alternative irrigation regimes produce rice safe from arsenic contamination.
    Rokonuzzaman MD, Ye Z, Wu C, Li W.
    Environ Pollut; 2022 Oct 01; 310():119829. PubMed ID: 35917836
    [Abstract] [Full Text] [Related]

  • 39. A pilot study on using biochars as sustainable amendments to inhibit rice uptake of Hg from a historically polluted soil in a Karst region of China.
    Xing Y, Wang J, Xia J, Liu Z, Zhang Y, Du Y, Wei W.
    Ecotoxicol Environ Saf; 2019 Apr 15; 170():18-24. PubMed ID: 30508751
    [Abstract] [Full Text] [Related]

  • 40. Immobilization of Cd in paddy soil using moisture management and amendment.
    Li J, Xu Y.
    Environ Sci Pollut Res Int; 2015 Apr 15; 22(7):5580-6. PubMed ID: 25388557
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 25.