These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 33152876
1. Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea. He J, Li H, Zhang L, Zhi X, Li X, Wang X, Feng Z, Shen G, Ding X. Food Chem; 2021 Mar 01; 339():128085. PubMed ID: 33152876 [Abstract] [Full Text] [Related]
2. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Chen X, Lin M, Sun L, Xu T, Lai K, Huang M, Lin H. Food Chem; 2019 Sep 30; 293():271-277. PubMed ID: 31151611 [Abstract] [Full Text] [Related]
3. A spectroscopic approach to detect and quantify phosmet residues in Oolong tea by surface-enhanced Raman scattering and silver nanoparticle substrate. Chen X, Wang D, Li J, Xu T, Lai K, Ding Q, Lin H, Sun L, Lin M. Food Chem; 2020 May 15; 312():126016. PubMed ID: 31896459 [Abstract] [Full Text] [Related]
4. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Yaseen T, Pu H, Sun DW. Talanta; 2019 May 01; 196():537-545. PubMed ID: 30683402 [Abstract] [Full Text] [Related]
5. Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Hassan MM, Zareef M, Jiao T, Liu S, Xu Y, Viswadevarayalu A, Li H, Chen Q. Food Chem; 2021 Feb 15; 338():127796. PubMed ID: 32805691 [Abstract] [Full Text] [Related]
7. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods. Strickland AD, Batt CA. Anal Chem; 2009 Apr 15; 81(8):2895-903. PubMed ID: 19301846 [Abstract] [Full Text] [Related]
8. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M, Chen T, Liu Y, Zhang J, Sun H, Yang J, Zhu J, Liu J, Wu Y. ACS Sens; 2018 Nov 26; 3(11):2446-2454. PubMed ID: 30335972 [Abstract] [Full Text] [Related]
14. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Ouyang Q, Wang L, Ahmad W, Rong Y, Li H, Hu Y, Chen Q. Food Chem; 2021 Jul 01; 349():129157. PubMed ID: 33578248 [Abstract] [Full Text] [Related]
15. Ratiometric fluorescent sensing carbendazim in fruits and vegetables via its innate fluorescence coupling with UiO-67. Han Y, He X, Yang W, Luo X, Yu Y, Tang W, Yue T, Li Z. Food Chem; 2021 May 30; 345():128839. PubMed ID: 33340894 [Abstract] [Full Text] [Related]
17. Fast sensing of imidacloprid residue in tea using surface-enhanced Raman scattering by comparative multivariate calibration. Chen Q, Hassan MM, Xu J, Zareef M, Li H, Xu Y, Wang P, Agyekum AA, Kutsanedzie FYH, Viswadevarayalu A. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar 15; 211():86-93. PubMed ID: 30521997 [Abstract] [Full Text] [Related]
18. Simultaneous determination of carbendazim and chlorothalonil pesticide residues in peanut oil using excitation-emission matrix fluorescence coupled with three-way calibration method. Yuan YY, Wang ST, Cheng Q, Kong DM, Che XG. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep 05; 220():117088. PubMed ID: 31158606 [Abstract] [Full Text] [Related]
20. Determination of carbendazim residues in fruit juices by liquid chromatography-tandem mass spectrometry. Grujic S, Radisic M, Vasiljevic T, Lausevic M. Food Addit Contam; 2005 Nov 05; 22(11):1132-7. PubMed ID: 16332637 [Abstract] [Full Text] [Related] Page: [Next] [New Search]