These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 33157143

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Effect of luteolin on xanthine oxidase: inhibition kinetics and interaction mechanism merging with docking simulation.
    Yan J, Zhang G, Hu Y, Ma Y.
    Food Chem; 2013 Dec 15; 141(4):3766-73. PubMed ID: 23993547
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The mechanism of delaying starch digestion by luteolin.
    Zhao Y, Wang M, Zhang J, Xiong C, Huang G.
    Food Funct; 2021 Nov 29; 12(23):11862-11871. PubMed ID: 34734615
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Molecular docking and two-dimensional quantitative structure-activity relationship studies of synthetic flavonoids on horseradish peroxidase compounds (I, II, and III).
    Mahfoudi R, Tahri D, Djeridane A, Yousfi M, Gaydou EM.
    J Biochem Mol Toxicol; 2018 Dec 29; 32(12):e22222. PubMed ID: 30230144
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Inhibitory mechanism of epicatechin gallate on tyrosinase: inhibitory interaction, conformational change and computational simulation.
    Song X, Hu X, Zhang Y, Pan J, Gong D, Zhang G.
    Food Funct; 2020 Jun 24; 11(6):4892-4902. PubMed ID: 32490491
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis.
    Zhang L, Zhao X, Tao GJ, Chen J, Zheng ZP.
    Food Chem; 2017 May 15; 223():40-48. PubMed ID: 28069121
    [Abstract] [Full Text] [Related]

  • 14. Inhibitory mechanism of scutellarein on tyrosinase by kinetics, spectroscopy and molecular simulation.
    Chen Q, Shang C, Han M, Chen C, Tang W, Liu W.
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Aug 05; 296():122644. PubMed ID: 36963278
    [Abstract] [Full Text] [Related]

  • 15. Magnolol and Luteolin Inhibition of α-Glucosidase Activity: Kinetics and Type of Interaction Detected by In Vitro and In Silico Studies.
    Djeujo FM, Ragazzi E, Urettini M, Sauro B, Cichero E, Tonelli M, Froldi G.
    Pharmaceuticals (Basel); 2022 Feb 08; 15(2):. PubMed ID: 35215317
    [Abstract] [Full Text] [Related]

  • 16. Insights into the binding of paclitaxel to human serum albumin: multispectroscopic studies.
    Yang X, Ye Z, Yuan Y, Zheng Z, Shi J, Ying Y, Huang P.
    Luminescence; 2013 Feb 08; 28(3):427-34. PubMed ID: 23674486
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase.
    Wang Y, Zhang G, Pan J, Gong D.
    J Agric Food Chem; 2015 Jan 21; 63(2):526-34. PubMed ID: 25539132
    [Abstract] [Full Text] [Related]

  • 20. Conformational changes of tyrosinase caused by pentagalloylglucose binding: Implications for inhibitory effect and underlying mechanism.
    Liu L, Li J, Zhang L, Wei S, Qin Z, Liang D, Ding B, Chen H, Song W.
    Food Res Int; 2022 Jul 21; 157():111312. PubMed ID: 35761605
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.