These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 33174552

  • 1. Lowering the Schottky barrier height of G/WSSe van der Waals heterostructures by changing the interlayer coupling and applying external biaxial strain.
    Zhang WX, Yin Y, He C.
    Phys Chem Chem Phys; 2020 Nov 25; 22(45):26231-26240. PubMed ID: 33174552
    [Abstract] [Full Text] [Related]

  • 2. Tunable Schottky and Ohmic contacts in graphene and tellurene van der Waals heterostructures.
    Qin X, Hu W, Yang J.
    Phys Chem Chem Phys; 2019 Nov 14; 21(42):23611-23619. PubMed ID: 31624813
    [Abstract] [Full Text] [Related]

  • 3. Tunable interlayer coupling and Schottky barrier in graphene and Janus MoSSe heterostructures by applying an external field.
    Li Y, Wang J, Zhou B, Wang F, Miao Y, Wei J, Zhang B, Zhang K.
    Phys Chem Chem Phys; 2018 Oct 07; 20(37):24109-24116. PubMed ID: 30204181
    [Abstract] [Full Text] [Related]

  • 4. Tunable Schottky barrier in Janus-XGa2Y/Graphene (X/Y = S, Se, Te;XY) van der Waals heterostructures.
    Guo H, Lang X, Tian X, Jiang W, Wang G.
    Nanotechnology; 2022 Jul 28; 33(42):. PubMed ID: 35817003
    [Abstract] [Full Text] [Related]

  • 5. Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe2 van der Waals Heterostructure.
    Lan Y, Xia LX, Huang T, Xu W, Huang GF, Hu W, Huang WQ.
    Nanoscale Res Lett; 2020 Sep 21; 15(1):180. PubMed ID: 32955632
    [Abstract] [Full Text] [Related]

  • 6. Tunable Schottky Barrier and Interfacial Electronic Properties in Graphene/ZnSe Heterostructures.
    Xiao W, Liu T, Zhang Y, Zhong Z, Zhang X, Luo Z, Lv B, Zhou X, Zhang Z, Liu X.
    Front Chem; 2021 Sep 21; 9():744977. PubMed ID: 34660536
    [Abstract] [Full Text] [Related]

  • 7. Strain controllable band alignment and the interfacial and optical properties of tellurene/GaAs van der Waals heterostructures.
    Li G, Bao H, Peng Y, Fu X, Liao W, Xiang C.
    Phys Chem Chem Phys; 2024 Jun 06; 26(22):16327-16336. PubMed ID: 38805024
    [Abstract] [Full Text] [Related]

  • 8. Tunable Schottky barrier in graphene/graphene-like germanium carbide van der Waals heterostructure.
    Wang S, Chou JP, Ren C, Tian H, Yu J, Sun C, Xu Y, Sun M.
    Sci Rep; 2019 Mar 26; 9(1):5208. PubMed ID: 30914666
    [Abstract] [Full Text] [Related]

  • 9. First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures.
    Li S, Sun M, Chou JP, Wei J, Xing H, Hu A.
    Phys Chem Chem Phys; 2018 Oct 03; 20(38):24726-24734. PubMed ID: 30225488
    [Abstract] [Full Text] [Related]

  • 10. Dipole controlled Schottky barrier in the blue-phosphorene-phase of GeSe based van der Waals heterostructures.
    Peng L, Cui Y, Sun L, Du J, Wang S, Zhang S, Huang Y.
    Nanoscale Horiz; 2019 Mar 01; 4(2):480-489. PubMed ID: 32254101
    [Abstract] [Full Text] [Related]

  • 11. Tunable Schottky contacts in MSe2/NbSe2 (M = Mo and W) heterostructures and promising application potential in field-effect transistors.
    Lv X, Wei W, Zhao P, Li J, Huang B, Dai Y.
    Phys Chem Chem Phys; 2018 Jan 17; 20(3):1897-1903. PubMed ID: 29296994
    [Abstract] [Full Text] [Related]

  • 12. Tuning the Schottky barrier height in graphene/monolayer-GeI2van der Waals heterostructure.
    de Andrade Deus DP, de Oliveira ISS.
    J Phys Condens Matter; 2020 May 29; 32(35):. PubMed ID: 32320968
    [Abstract] [Full Text] [Related]

  • 13. Interface Schottky barrier in Hf2NT2/MSSe (T = F, O, OH; M = Mo, W) heterostructures.
    Jing T, Liang D, Hao J, Deng M, Cai S.
    Phys Chem Chem Phys; 2019 Mar 06; 21(10):5394-5401. PubMed ID: 30783635
    [Abstract] [Full Text] [Related]

  • 14. Efficient Modulation of Schottky to Ohmic Contact in MoSi2N4/M3C2 (M = Zn, Cd, Hg) van der Waals Heterostructures.
    Wei X, Zhang M, Zhang X, Lin Y, Jiang Z, Du A.
    J Phys Chem Lett; 2024 Apr 11; 15(14):3871-3883. PubMed ID: 38560820
    [Abstract] [Full Text] [Related]

  • 15. Tunable Contact Types and Interfacial Electronic Properties in TaS2/MoS2 and TaS2/WSe2 Heterostructures.
    Zhu X, Jiang H, Zhang Y, Wang D, Fan L, Chen Y, Qu X, Yang L, Liu Y.
    Molecules; 2023 Jul 24; 28(14):. PubMed ID: 37513478
    [Abstract] [Full Text] [Related]

  • 16. First-principles study of controllable contact types in Janus MoSH/GaN van der Waals heterostructure.
    Liu Y, Gao T.
    J Chem Phys; 2023 Sep 07; 159(9):. PubMed ID: 37655766
    [Abstract] [Full Text] [Related]

  • 17. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV, Hieu NN, Hoi BD, Nguyen CV.
    Phys Chem Chem Phys; 2018 Jul 04; 20(26):17899-17908. PubMed ID: 29926024
    [Abstract] [Full Text] [Related]

  • 18. First-principles study on the electronic structures and contact properties of graphene/XC (X = P, As, Sb, and Bi) van der Waals heterostructures.
    Hu X, Liu W, Yang J, Zhang S, Ye Y.
    Phys Chem Chem Phys; 2021 Nov 17; 23(44):25136-25142. PubMed ID: 34729574
    [Abstract] [Full Text] [Related]

  • 19. Biaxial strain, electric field and interlayer distance-tailored electronic structure and magnetic properties of two-dimensional g-C3N4/Li-adsorbed Cr2Ge2Te6 van der Waals heterostructures.
    Gao Y, Zhou B, Wang X.
    Phys Chem Chem Phys; 2021 Mar 18; 23(10):6171-6181. PubMed ID: 33687408
    [Abstract] [Full Text] [Related]

  • 20. Janus MoSH/WSi2N4 van der Waals Heterostructure: Two-Dimensional Metal/Semiconductor Contact.
    Wang Y, Zhu X, Zhang H, He S, Liu Y, Zhao W, Liu H, Qu X.
    Molecules; 2024 Jul 28; 29(15):. PubMed ID: 39124958
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.