These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 33182263

  • 1. Batch Studies of Phosphonate and Phosphate Adsorption on Granular Ferric Hydroxide (GFH) with Membrane Concentrate and Its Synthetic Replicas.
    Reinhardt T, Veizaga Campero AN, Minke R, Schönberger H, Rott E.
    Molecules; 2020 Nov 09; 25(21):. PubMed ID: 33182263
    [Abstract] [Full Text] [Related]

  • 2. Batch studies of phosphonate adsorption on granular ferric hydroxides.
    Reinhardt T, Gómez Elordi M, Minke R, Schönberger H, Rott E.
    Water Sci Technol; 2020 Jan 09; 81(1):10-20. PubMed ID: 32293584
    [Abstract] [Full Text] [Related]

  • 3. Adsorption of phosphonate antiscalant from reverse osmosis membrane concentrate onto granular ferric hydroxide.
    Boels L, Keesman KJ, Witkamp GJ.
    Environ Sci Technol; 2012 Sep 04; 46(17):9638-45. PubMed ID: 22873428
    [Abstract] [Full Text] [Related]

  • 4. Bromate removal from water by granular ferric hydroxide (GFH).
    Bhatnagar A, Choi Y, Yoon Y, Shin Y, Jeon BH, Kang JW.
    J Hazard Mater; 2009 Oct 15; 170(1):134-40. PubMed ID: 19481866
    [Abstract] [Full Text] [Related]

  • 5. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide.
    Genz A, Kornmüller A, Jekel M.
    Water Res; 2004 Sep 15; 38(16):3523-30. PubMed ID: 15325178
    [Abstract] [Full Text] [Related]

  • 6. Removal of phosphonates from synthetic and industrial wastewater with reusable magnetic adsorbent particles.
    Rott E, Nouri M, Meyer C, Minke R, Schneider M, Mandel K, Drenkova-Tuhtan A.
    Water Res; 2018 Nov 15; 145():608-617. PubMed ID: 30199805
    [Abstract] [Full Text] [Related]

  • 7. Defluoridation from aqueous solutions by granular ferric hydroxide (GFH).
    Kumar E, Bhatnagar A, Ji M, Jung W, Lee SH, Kim SJ, Lee G, Song H, Choi JY, Yang JS, Jeon BH.
    Water Res; 2009 Feb 15; 43(2):490-8. PubMed ID: 18995880
    [Abstract] [Full Text] [Related]

  • 8. Oxidation of the nitrogen-free phosphonate antiscalants HEDP and PBTC in reverse osmosis concentrates: Reaction kinetics and degradation rate.
    Mutke XAM, Tavichaiyuth K, Drees F, Lutze HV, Schmidt TC.
    Water Res; 2023 Apr 15; 233():119571. PubMed ID: 36841164
    [Abstract] [Full Text] [Related]

  • 9. Removal of aqueous hydrogen sulfide by granular ferric hydroxide-kinetics, capacity and reuse.
    Sun J, Zhou J, Shang C, Kikkert GA.
    Chemosphere; 2014 Dec 15; 117():324-9. PubMed ID: 25150683
    [Abstract] [Full Text] [Related]

  • 10. Adsorptive separation of phosphate oxyanion from aqueous solution using an inorganic adsorbent.
    Saha B, Griffin L, Blunden H.
    Environ Geochem Health; 2010 Aug 15; 32(4):341-7. PubMed ID: 20387091
    [Abstract] [Full Text] [Related]

  • 11. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm.
    Hamidi F, Dehghani MH, Kasraee M, Salari M, Shiri L, Mahvi AH.
    Sci Rep; 2022 Mar 19; 12(1):4761. PubMed ID: 35306520
    [Abstract] [Full Text] [Related]

  • 12. Importance of iron complexation and floc formation towards phosphonate removal with Fe-electrocoagulation.
    Hu H, Song B, Lei Y.
    Water Res; 2024 Sep 15; 262():122117. PubMed ID: 39053207
    [Abstract] [Full Text] [Related]

  • 13. Effect of calcium on adsorptive removal of As(III) and As(V) by iron oxide-based adsorbents.
    Uwamariya V, Petrusevski B, Lens PN, Amy G.
    Environ Technol; 2014 Sep 15; 35(21-24):3153-64. PubMed ID: 25244144
    [Abstract] [Full Text] [Related]

  • 14. Competitive adsorption of phosphate and phosphonates onto goethite.
    Nowack B, Stone AT.
    Water Res; 2006 Jun 15; 40(11):2201-9. PubMed ID: 16674984
    [Abstract] [Full Text] [Related]

  • 15. Understanding Nitrilotris(methylenephosphonic acid) reactions with ferric hydroxide.
    Martínez RJ, Farrell J.
    Chemosphere; 2017 May 15; 175():490-496. PubMed ID: 28249190
    [Abstract] [Full Text] [Related]

  • 16. Treatment of membrane concentrates: phosphate removal and reduction of scaling potential.
    Sperlich A, Warschke D, Wegmann C, Ernst M, Jekel M.
    Water Sci Technol; 2010 May 15; 61(2):301-6. PubMed ID: 20107255
    [Abstract] [Full Text] [Related]

  • 17. Fluoride adsorption onto granular ferric hydroxide: effects of ionic strength, pH, surface loading, and major co-existing anions.
    Tang Y, Guan X, Wang J, Gao N, McPhail MR, Chusuei CC.
    J Hazard Mater; 2009 Nov 15; 171(1-3):774-9. PubMed ID: 19616377
    [Abstract] [Full Text] [Related]

  • 18. Removal of arsenate from water by adsorbents: a comparative case study.
    Bang S, Pena ME, Patel M, Lippincott L, Meng X, Kim KW.
    Environ Geochem Health; 2011 Jan 15; 33 Suppl 1():133-41. PubMed ID: 21046433
    [Abstract] [Full Text] [Related]

  • 19. The effect of granular ferric hydroxide amendment on the reduction of nitrate in groundwater by zero-valent iron.
    Song H, Jeon BH, Chon CM, Kim Y, Nam IH, Schwartz FW, Cho DW.
    Chemosphere; 2013 Nov 15; 93(11):2767-73. PubMed ID: 24125714
    [Abstract] [Full Text] [Related]

  • 20. Complexation-based selectivity of organic phosphonates adsorption from high-salinity water by neodymium-doped nanocomposite.
    Ni C, Chen N, He J, Pan M, Wang X, Pan B.
    Water Res; 2023 Nov 01; 246():120705. PubMed ID: 37827040
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.