These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 33184003

  • 1. The synergistic role of Pu.1 and Fms in zebrafish osteoclast-reducing osteopetrosis and possible therapeutic strategies.
    Liu W, Di Q, Li K, Li J, Ma N, Huang Z, Chen J, Zhang S, Zhang W, Zhang Y.
    J Genet Genomics; 2020 Sep 20; 47(9):535-546. PubMed ID: 33184003
    [Abstract] [Full Text] [Related]

  • 2. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1.
    Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, Teitelbaum SL.
    Nature; 1997 Mar 06; 386(6620):81-4. PubMed ID: 9052784
    [Abstract] [Full Text] [Related]

  • 3. Impaired micro-RNA pathways diminish osteoclast differentiation and function.
    Sugatani T, Hruska KA.
    J Biol Chem; 2009 Feb 13; 284(7):4667-78. PubMed ID: 19059913
    [Abstract] [Full Text] [Related]

  • 4. OSTM1 bone defect reveals an intercellular hematopoietic crosstalk.
    Pata M, Héraud C, Vacher J.
    J Biol Chem; 2008 Nov 07; 283(45):30522-30. PubMed ID: 18790735
    [Abstract] [Full Text] [Related]

  • 5. Blocking of the Ubiquitin-Proteasome System Prevents Inflammation-Induced Bone Loss by Accelerating M-CSF Receptor c-Fms Degradation in Osteoclast Differentiation.
    Lee K, Kim MY, Ahn H, Kim HS, Shin HI, Jeong D.
    Int J Mol Sci; 2017 Sep 25; 18(10):. PubMed ID: 28946669
    [Abstract] [Full Text] [Related]

  • 6. The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function.
    Rajapurohitam V, Chalhoub N, Benachenhou N, Neff L, Baron R, Vacher J.
    Bone; 2001 May 25; 28(5):513-23. PubMed ID: 11344051
    [Abstract] [Full Text] [Related]

  • 7. ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion.
    Supanchart C, Wartosch L, Schlack C, Kühnisch J, Felsenberg D, Fuhrmann JC, de Vernejoul MC, Jentsch TJ, Kornak U.
    Bone; 2014 Jan 25; 58():92-102. PubMed ID: 24103576
    [Abstract] [Full Text] [Related]

  • 8. Osteopetrosis.
    Tolar J, Teitelbaum SL, Orchard PJ.
    N Engl J Med; 2004 Dec 30; 351(27):2839-49. PubMed ID: 15625335
    [No Abstract] [Full Text] [Related]

  • 9. Limited rescue of osteoclast-poor osteopetrosis after successful engraftment by cord blood from an unrelated donor.
    Nicholls BM, Bredius RG, Hamdy NA, Gerritsen EJ, Lankester AC, Hogendoorn PC, Nesbitt SA, Horton MA, Flanagan AM.
    J Bone Miner Res; 2005 Dec 30; 20(12):2264-70. PubMed ID: 16294279
    [Abstract] [Full Text] [Related]

  • 10. In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects.
    Blair HC, Borysenko CW, Villa A, Schlesinger PH, Kalla SE, Yaroslavskiy BB, Garćia-Palacios V, Oakley JI, Orchard PJ.
    J Bone Miner Res; 2004 Aug 30; 19(8):1329-38. PubMed ID: 15231021
    [Abstract] [Full Text] [Related]

  • 11. Role of CSF-1 in bone and bone marrow development.
    Cecchini MG, Hofstetter W, Halasy J, Wetterwald A, Felix R.
    Mol Reprod Dev; 1997 Jan 30; 46(1):75-83; discussion 83-4. PubMed ID: 8981367
    [Abstract] [Full Text] [Related]

  • 12. The effects of vitamin D binding protein-macrophage activating factor and colony-stimulating factor-1 on hematopoietic cells in normal and osteopetrotic rats.
    Benis KA, Schneider GB.
    Blood; 1996 Oct 15; 88(8):2898-905. PubMed ID: 8874186
    [Abstract] [Full Text] [Related]

  • 13. Ostm1 from Mouse to Human: Insights into Osteoclast Maturation.
    Vacher J, Bruccoleri M, Pata M.
    Int J Mol Sci; 2020 Aug 05; 21(16):. PubMed ID: 32764302
    [Abstract] [Full Text] [Related]

  • 14. Lymphocytes and the Dap12 adaptor are key regulators of osteoclast activation associated with gonadal failure.
    Anginot A, Dacquin R, Mazzorana M, Jurdic P.
    PLoS One; 2007 Jul 04; 2(7):e585. PubMed ID: 17611620
    [Abstract] [Full Text] [Related]

  • 15. Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties.
    Chu K, Snyder R, Econs MJ.
    J Bone Miner Res; 2006 Jul 04; 21(7):1089-97. PubMed ID: 16813529
    [Abstract] [Full Text] [Related]

  • 16. Are nonresorbing osteoclasts sources of bone anabolic activity?
    Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K.
    J Bone Miner Res; 2007 Apr 04; 22(4):487-94. PubMed ID: 17227224
    [Abstract] [Full Text] [Related]

  • 17. Macrophage colony-stimulating factor and receptor activator NF-kappaB ligand fail to rescue osteoclast-poor human malignant infantile osteopetrosis in vitro.
    Flanagan AM, Massey HM, Wilson C, Vellodi A, Horton MA, Steward CG.
    Bone; 2002 Jan 04; 30(1):85-90. PubMed ID: 11792569
    [Abstract] [Full Text] [Related]

  • 18. Chemokine and chemokine receptor expression during colony stimulating factor-1-induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-1gamma) in osteoclastogenesis in vivo and in vitro.
    Yang M, Mailhot G, MacKay CA, Mason-Savas A, Aubin J, Odgren PR.
    Blood; 2006 Mar 15; 107(6):2262-70. PubMed ID: 16304045
    [Abstract] [Full Text] [Related]

  • 19. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption.
    Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Nishikawa S, Kodama H.
    J Exp Med; 1999 Jul 19; 190(2):293-8. PubMed ID: 10432291
    [Abstract] [Full Text] [Related]

  • 20. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation.
    Thudium CS, Moscatelli I, Flores C, Thomsen JS, Brüel A, Gudmann NS, Hauge EM, Karsdal MA, Richter J, Henriksen K.
    Calcif Tissue Int; 2014 Jul 19; 95(1):83-93. PubMed ID: 24838599
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.