These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 33184241

  • 1. Exocyst subunit BcSec3 regulates growth, development and pathogenicity in Botrytis cinerea.
    Ma Z, Chen Z, Wang W, Wang K, Zhu T.
    J Biosci; 2020; 45():. PubMed ID: 33184241
    [Abstract] [Full Text] [Related]

  • 2. Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea.
    Guan W, Feng J, Wang R, Ma Z, Wang W, Wang K, Zhu T.
    Curr Genet; 2020 Feb; 66(1):85-95. PubMed ID: 31183512
    [Abstract] [Full Text] [Related]

  • 3. The Autophagy Gene BcATG8 Regulates the Vegetative Differentiation and Pathogenicity of Botrytis cinerea.
    Ren W, Liu N, Sang C, Shi D, Zhou M, Chen C, Qin Q, Chen W.
    Appl Environ Microbiol; 2018 Jun 01; 84(11):. PubMed ID: 29572212
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Botrytis cinerea.
    Han JW, Kim DY, Lee YJ, Choi YR, Kim B, Choi GJ, Han SW, Kim H.
    J Agric Food Chem; 2020 Aug 26; 68(34):9171-9179. PubMed ID: 32786857
    [Abstract] [Full Text] [Related]

  • 7. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen.
    Choi GJ, Kim JC, Jang KS, Cho KY, Kim HT.
    J Microbiol Biotechnol; 2008 Jan 26; 18(1):167-70. PubMed ID: 18239435
    [Abstract] [Full Text] [Related]

  • 8. Ubiquitin-like activating enzymes BcAtg3 and BcAtg7 participate in development and pathogenesis of Botrytis cinerea.
    Ren W, Sang C, Shi D, Song X, Zhou M, Chen C.
    Curr Genet; 2018 Aug 26; 64(4):919-930. PubMed ID: 29417220
    [Abstract] [Full Text] [Related]

  • 9. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea.
    Zhang W, Cao Y, Li H, Rasmey AM, Zhang K, Shi L, Ge B.
    Appl Microbiol Biotechnol; 2024 Jun 28; 108(1):398. PubMed ID: 38940906
    [Abstract] [Full Text] [Related]

  • 10. Functional analysis of diacylglycerol O-acyl transferase 2 gene to decipher its role in virulence of Botrytis cinerea.
    Sharma E, Tayal P, Anand G, Mathur P, Kapoor R.
    Curr Genet; 2018 Apr 28; 64(2):443-457. PubMed ID: 28940057
    [Abstract] [Full Text] [Related]

  • 11. The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea.
    Schumacher J, Studt L, Tudzynski P.
    Fungal Genet Biol; 2019 Feb 28; 123():14-24. PubMed ID: 30445217
    [Abstract] [Full Text] [Related]

  • 12. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Botrytis cinerea.
    Liu X, Xie J, Fu Y, Jiang D, Chen T, Cheng J.
    Int J Mol Sci; 2020 Jan 17; 21(2):. PubMed ID: 31963451
    [Abstract] [Full Text] [Related]

  • 13. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea.
    Cui Z, Gao N, Wang Q, Ren Y, Wang K, Zhu T.
    Curr Genet; 2015 Nov 17; 61(4):545-53. PubMed ID: 25634672
    [Abstract] [Full Text] [Related]

  • 14. Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains.
    González-Fernández R, Aloria K, Valero-Galván J, Redondo I, Arizmendi JM, Jorrín-Novo JV.
    J Proteomics; 2014 Jan 31; 97():195-221. PubMed ID: 23811051
    [Abstract] [Full Text] [Related]

  • 15. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Botrytis Cinerea.
    Vasquez-Montaño E, Hoppe G, Vega A, Olivares-Yañez C, Canessa P.
    mBio; 2020 Aug 04; 11(4):. PubMed ID: 32753496
    [Abstract] [Full Text] [Related]

  • 16. Cytological and Gene Profile Expression Analysis Reveals Modification in Metabolic Pathways and Catalytic Activities Induce Resistance in Botrytis cinerea Against Iprodione Isolated From Tomato.
    Maqsood A, Wu C, Ahmar S, Wu H.
    Int J Mol Sci; 2020 Jul 09; 21(14):. PubMed ID: 32660143
    [Abstract] [Full Text] [Related]

  • 17. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits.
    Rui O, Hahn M.
    Microbiology (Reading); 2007 Aug 09; 153(Pt 8):2791-2802. PubMed ID: 17660443
    [Abstract] [Full Text] [Related]

  • 18. The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea.
    Kokkelink L, Minz A, Al-Masri M, Giesbert S, Barakat R, Sharon A, Tudzynski P.
    Fungal Genet Biol; 2011 Nov 09; 48(11):1012-9. PubMed ID: 21839848
    [Abstract] [Full Text] [Related]

  • 19. A Single Nucleotide Mutation in Adenylate Cyclase Affects Vegetative Growth, Sclerotial Formation and Virulence of Botrytis cinerea.
    Chen X, Zhang X, Zhu P, Wang Y, Na Y, Guo H, Cai Y, Nie H, Jiang Y, Xu L.
    Int J Mol Sci; 2020 Apr 21; 21(8):. PubMed ID: 32326350
    [Abstract] [Full Text] [Related]

  • 20. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence.
    Hou J, Feng HQ, Chang HW, Liu Y, Li GH, Yang S, Sun CH, Zhang MZ, Yuan Y, Sun J, Zhu-Salzman K, Zhang H, Qin QM.
    New Phytol; 2020 Jan 21; 225(2):930-947. PubMed ID: 31529514
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.