These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
255 related items for PubMed ID: 33206520
1. Accounting for the Central Role of Interfacial Water in Protein-Ligand Binding Free Energy Calculations. Ben-Shalom IY, Lin Z, Radak BK, Lin C, Sherman W, Gilson MK. J Chem Theory Comput; 2020 Dec 08; 16(12):7883-7894. PubMed ID: 33206520 [Abstract] [Full Text] [Related]
2. Fast Equilibration of Water between Buried Sites and the Bulk by Molecular Dynamics with Parallel Monte Carlo Water Moves on Graphical Processing Units. Ben-Shalom IY, Lin C, Radak BK, Sherman W, Gilson MK. J Chem Theory Comput; 2021 Dec 14; 17(12):7366-7372. PubMed ID: 34762421 [Abstract] [Full Text] [Related]
3. Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo. Bergazin TD, Ben-Shalom IY, Lim NM, Gill SC, Gilson MK, Mobley DL. J Comput Aided Mol Des; 2021 Feb 14; 35(2):167-177. PubMed ID: 32968887 [Abstract] [Full Text] [Related]
4. Simulating Water Exchange to Buried Binding Sites. Ben-Shalom IY, Lin C, Kurtzman T, Walker RC, Gilson MK. J Chem Theory Comput; 2019 Apr 09; 15(4):2684-2691. PubMed ID: 30835999 [Abstract] [Full Text] [Related]
5. Assessing the Predictive Power of Relative Binding Free Energy Calculations for Test Cases Involving Displacement of Binding Site Water Molecules. Wahl J, Smieško M. J Chem Inf Model; 2019 Feb 25; 59(2):754-765. PubMed ID: 30640456 [Abstract] [Full Text] [Related]
7. Protein-Ligand Binding Free Energy Calculations with FEP. Wang L, Chambers J, Abel R. Methods Mol Biol; 2019 Feb 25; 2022():201-232. PubMed ID: 31396905 [Abstract] [Full Text] [Related]
8. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques. Ge Y, Wych DC, Samways ML, Wall ME, Essex JW, Mobley DL. J Chem Theory Comput; 2022 Mar 08; 18(3):1359-1381. PubMed ID: 35148093 [Abstract] [Full Text] [Related]
9. Enhanced ligand sampling for relative protein-ligand binding free energy calculations. Kaus JW, McCammon JA. J Phys Chem B; 2015 May 21; 119(20):6190-7. PubMed ID: 25906170 [Abstract] [Full Text] [Related]
10. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo. Ross GA, Russell E, Deng Y, Lu C, Harder ED, Abel R, Wang L. J Chem Theory Comput; 2020 Oct 13; 16(10):6061-6076. PubMed ID: 32955877 [Abstract] [Full Text] [Related]
11. Absolute Binding Free Energy Calculations for Buried Water Molecules. Ge Y, Baumann HM, Mobley DL. J Chem Theory Comput; 2022 Nov 08; 18(11):6482-6499. PubMed ID: 36197451 [Abstract] [Full Text] [Related]
12. Dissecting the Influence of Protein Flexibility on the Location and Thermodynamic Profile of Explicit Water Molecules in Protein-Ligand Binding. Yang Y, Lill MA. J Chem Theory Comput; 2016 Sep 13; 12(9):4578-92. PubMed ID: 27494046 [Abstract] [Full Text] [Related]
13. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo. Ge Y, Melling OJ, Dong W, Essex JW, Mobley DL. J Comput Aided Mol Des; 2022 Oct 13; 36(10):767-779. PubMed ID: 36198874 [Abstract] [Full Text] [Related]
14. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW, Harder E, Lin T, Abel R, McCammon JA, Wang L. J Chem Theory Comput; 2015 Jun 09; 11(6):2670-9. PubMed ID: 26085821 [Abstract] [Full Text] [Related]
15. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo. Gill SC, Lim NM, Grinaway PB, Rustenburg AS, Fass J, Ross GA, Chodera JD, Mobley DL. J Phys Chem B; 2018 May 31; 122(21):5579-5598. PubMed ID: 29486559 [Abstract] [Full Text] [Related]
16. Studying the Collective Functional Response of a Receptor in Alchemical Ligand Binding Free Energy Simulations with Accelerated Solvation Layer Dynamics. Jiang W. J Chem Theory Comput; 2024 Apr 23; 20(8):3085-3095. PubMed ID: 38568961 [Abstract] [Full Text] [Related]
17. Prediction of octanol-water partition coefficients for the SAMPL6-[Formula: see text] molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields. Fan S, Iorga BI, Beckstein O. J Comput Aided Mol Des; 2020 May 23; 34(5):543-560. PubMed ID: 31960254 [Abstract] [Full Text] [Related]
18. Assigning crystallographic electron densities with free energy calculations-The case of the fluoride channel Fluc. Ariz-Extreme I, Hub JS. PLoS One; 2018 May 23; 13(5):e0196751. PubMed ID: 29771936 [Abstract] [Full Text] [Related]
19. Hydration energy landscape of the active site cavity in cytochrome P450cam. Helms V, Wade RC. Proteins; 1998 Aug 15; 32(3):381-96. PubMed ID: 9715913 [Abstract] [Full Text] [Related]
20. Calculation of Thermodynamic Properties of Bound Water Molecules. Yang Y, Abdallah AHA, Lill MA. Methods Mol Biol; 2018 Aug 15; 1762():389-402. PubMed ID: 29594782 [Abstract] [Full Text] [Related] Page: [Next] [New Search]