These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
446 related items for PubMed ID: 33214128
21. Selective binding of pyrene in subdomain IB of human serum albumin: Combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility. Ling I, Taha M, Al-Sharji NA, Abou-Zied OK. Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr 05; 194():36-44. PubMed ID: 29316482 [Abstract] [Full Text] [Related]
22. Resolution of tryptophan-ANS fluorescence energy transfer in apomyoglobin by site-directed mutagenesis. Sirangelo I, Malmo C, Casillo M, Irace G. Photochem Photobiol; 2002 Oct 05; 76(4):381-4. PubMed ID: 12405143 [Abstract] [Full Text] [Related]
23. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately. Peulen TO, Opanasyuk O, Seidel CAM. J Phys Chem B; 2017 Sep 07; 121(35):8211-8241. PubMed ID: 28709377 [Abstract] [Full Text] [Related]
24. Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores. Hevekerl H, Spielmann T, Chmyrov A, Widengren J. J Phys Chem B; 2011 Nov 17; 115(45):13360-70. PubMed ID: 21928769 [Abstract] [Full Text] [Related]
25. QTR-FRET: Efficient background reduction technology in time-resolved förster resonance energy transfer assays. Syrjänpää M, Vuorinen E, Kulmala S, Wang Q, Härmä H, Kopra K. Anal Chim Acta; 2019 Dec 27; 1092():93-101. PubMed ID: 31708038 [Abstract] [Full Text] [Related]
26. A simulation study on the influence of energy migration and relative interaction strengths of homo- and hetero-FRET on the net FRET efficiency. Rout J, Swain BC, Sakshi, Biswas S, Das AK, Tripathy U. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb 05; 226():117599. PubMed ID: 31751800 [Abstract] [Full Text] [Related]
27. Quantitative time domain analysis of lifetime-based Förster resonant energy transfer measurements with fluorescent proteins: Static random isotropic fluorophore orientation distributions. Alexandrov Y, Nikolic DS, Dunsby C, French PMW. J Biophotonics; 2018 Jul 05; 11(7):e201700366. PubMed ID: 29582566 [Abstract] [Full Text] [Related]
29. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR, Medintz IL, Mattoussi H. Chemphyschem; 2006 Jan 16; 7(1):47-57. PubMed ID: 16370019 [Abstract] [Full Text] [Related]
30. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement. Lin F, Zhang C, Du M, Wang L, Mai Z, Chen T. J Microsc; 2018 Nov 16; 272(2):145-150. PubMed ID: 30338530 [Abstract] [Full Text] [Related]
31. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A, Buschmann V, Müller C, Sauer M. J Biotechnol; 2002 Jan 16; 82(3):211-31. PubMed ID: 11999691 [Abstract] [Full Text] [Related]
32. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. Rüttinger S, Macdonald R, Krämer B, Koberling F, Roos M, Hildt E. J Biomed Opt; 2006 Jan 16; 11(2):024012. PubMed ID: 16674202 [Abstract] [Full Text] [Related]
33. Excitation energy migration to study protein oligomerization and amyloid formation. Majumdar A, Mukhopadhyay S. Biophys Chem; 2022 Feb 16; 281():106719. PubMed ID: 34864229 [Abstract] [Full Text] [Related]
34. Human serum albumin-malathion complex study in the presence of silver nanoparticles at different sizes by multi spectroscopic techniques. Baghaee PT, Divsalar A, Chamani J, Donya A. J Biomol Struct Dyn; 2019 Jun 16; 37(9):2254-2264. PubMed ID: 30035667 [Abstract] [Full Text] [Related]
35. Maslinic acid conjugate with 7-amino-4-methylcoumarin as probe to monitor the temperature dependent conformational changes of human serum albumin by FRET. Molina-Bolívar JA, Galisteo-González F, Ruiz CC, Medina-O'Donnell M, Martínez A, Parra A. Spectrochim Acta A Mol Biomol Spectrosc; 2019 May 05; 214():161-169. PubMed ID: 30776717 [Abstract] [Full Text] [Related]
36. Energy transfer from tryptophan residues of proteins to 8-anilinonaphthalene-1-sulfonate. Chang LS, Wen EY, Hung JJ, Chang CC. J Protein Chem; 1994 Oct 05; 13(7):635-40. PubMed ID: 7702745 [Abstract] [Full Text] [Related]
37. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L, Bradrick TD, Karpova TS, Wu X, Fox MH, Fischer R, McNally JG, Knutson JR, Grammer AC, Lipsky PE. Cytometry A; 2003 May 05; 53(1):39-54. PubMed ID: 12701131 [Abstract] [Full Text] [Related]
38. Selective and sensitive homogenous assay of serum albumin with 1-anilinonaphthalene-8-sulphonate as a biosensor. Qin J, Li Y, He C, Yang X, Xie Y, Hu X, Chen C, Wang L, Pu J, Liao F. Anal Chim Acta; 2014 Jun 04; 829():60-7. PubMed ID: 24856404 [Abstract] [Full Text] [Related]
39. A fluorescent indicator for imaging lysosomal zinc(II) with Förster resonance energy transfer (FRET)-enhanced photostability and a narrow band of emission. Sreenath K, Yuan Z, Allen JR, Davidson MW, Zhu L. Chemistry; 2015 Jan 07; 21(2):867-74. PubMed ID: 25382395 [Abstract] [Full Text] [Related]
40. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer. Qiu X, Xu J, Cardoso Dos Santos M, Hildebrandt N. Acc Chem Res; 2022 Feb 15; 55(4):551-564. PubMed ID: 35084817 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]