These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 33218811

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation.
    Wiggenhauser M, Aucour AM, Bureau S, Campillo S, Telouk P, Romani M, Ma JF, Landrot G, Sarret G.
    Environ Pollut; 2021 Jan 15; 269():115934. PubMed ID: 33277064
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Redox dependence of manganese controls cadmium isotope fractionation in a paddy soil-rice system under unsteady pe + pH conditions.
    Wang M, Chen S, Shi H, Liu Y.
    Sci Total Environ; 2022 Feb 01; 806(Pt 2):150675. PubMed ID: 34592283
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Source attributions of Cadmium contamination in rice grains by Cadmium isotope composition analysis: A field study.
    Yan Y, Sun Q, Yang J, Zhang X, Guo B.
    Ecotoxicol Environ Saf; 2021 Mar 01; 210():111865. PubMed ID: 33418154
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Roles of Chloride and Sulfate Ions in Controlling Cadmium Transport in a Soil-Rice System as Evidenced by the Cd Isotope Fingerprint.
    Zhong S, Fang L, Li X, Liu T, Wang P, Gao R, Chen G, Yin H, Yang Y, Huang F, Li F.
    Environ Sci Technol; 2023 Nov 21; 57(46):17920-17929. PubMed ID: 37755710
    [Abstract] [Full Text] [Related]

  • 16. Aging and phytoavailability of newly introduced and legacy cadmium in paddy soil and their bioaccessibility in rice grain distinguished by enriched isotope tracing.
    Dong Q, Liu Y, Liu G, Guo Y, Yang Q, Shi J, Hu L, Liang Y, Yin Y, Cai Y, Jiang G.
    J Hazard Mater; 2021 Sep 05; 417():125998. PubMed ID: 33975165
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Formation of ferrihydrite induced by low pe+pH in paddy soil reduces Cd uptake by rice: Evidence from Cd isotope fractionation.
    Qin L, Wang M, Sun X, Yu L, Wang J, Han Y, Chen S.
    Environ Pollut; 2023 Jul 01; 328():121644. PubMed ID: 37061016
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.