These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 33222371

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Impact of Blood Flow Restriction Exercise on Central Hemodynamics and Fluid Regulating Hormones.
    Thompson KMA, Gamble ASD, Coates AM, Burr JF.
    Med Sci Sports Exerc; 2024 Feb 01; 56(2):362-369. PubMed ID: 37735813
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. The Impacts of Combined Blood Flow Restriction Training and Betaine Supplementation on One-Leg Press Muscular Endurance, Exercise-Associated Lactate Concentrations, Serum Metabolic Biomarkers, and Hypoxia-Inducible Factor-1α Gene Expression.
    Machek SB, Harris DR, Zawieja EE, Heileson JL, Wilburn DT, Radziejewska A, Chmurzynska A, Cholewa JM, Willoughby DS.
    Nutrients; 2022 Nov 27; 14(23):. PubMed ID: 36501070
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Augmented muscle deoxygenation during repeated sprint exercise with post-exercise blood flow restriction.
    Ienaga K, Yamaguchi K, Ota N, Goto K.
    Physiol Rep; 2022 May 27; 10(10):e15294. PubMed ID: 35586958
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise.
    Ahlborg G, Felig P.
    J Clin Invest; 1982 Jan 27; 69(1):45-54. PubMed ID: 7054242
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Blood Flow Restricted Exercise Compared to High Load Resistance Exercise During Unloading.
    Hackney KJ, Downs ME, Ploutz-Snyder L.
    Aerosp Med Hum Perform; 2016 Aug 27; 87(8):688-96. PubMed ID: 27634603
    [Abstract] [Full Text] [Related]

  • 38. Impact of Blood Flow Restriction Exercise on Muscle Fatigue Development and Recovery.
    Husmann F, Mittlmeier T, Bruhn S, Zschorlich V, Behrens M.
    Med Sci Sports Exerc; 2018 Mar 27; 50(3):436-446. PubMed ID: 29112627
    [Abstract] [Full Text] [Related]

  • 39. Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength.
    de Oliveira MF, Caputo F, Corvino RB, Denadai BS.
    Scand J Med Sci Sports; 2016 Sep 27; 26(9):1017-25. PubMed ID: 26369387
    [Abstract] [Full Text] [Related]

  • 40. Sprint training enhances ionic regulation during intense exercise in men.
    McKenna MJ, Heigenhauser GJ, McKelvie RS, MacDougall JD, Jones NL.
    J Physiol; 1997 Jun 15; 501 ( Pt 3)(Pt 3):687-702. PubMed ID: 9218228
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.