These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enhancement of NOx adsorption performance on zeolite via a facile modification strategy. Liu Y, Wu X, Yang X, Tao H, Li J, Zhang C, Yang RT, Li Z. J Hazard Mater; 2023 Feb 05; 443(Pt B):130225. PubMed ID: 36334572 [Abstract] [Full Text] [Related]
5. NO Removal with Efficient Recovery of N2O by Using Recyclable Fe3O4@EDTA@Fe(II) Complex: A Novel Approach toward Resource Recovery from Flue Gas. Sharif HMA, Cheng HY, Haider MR, Khan K, Yang L, Wang AJ. Environ Sci Technol; 2019 Jan 15; 53(2):1004-1013. PubMed ID: 30525505 [Abstract] [Full Text] [Related]
6. Dynamic Adsorption/Desorption of NOx on MFI Zeolites: Effects of Relative Humidity and Si/Al Ratio. Tao H, Liu Y. Nanomaterials (Basel); 2022 Dec 29; 13(1):. PubMed ID: 36616066 [Abstract] [Full Text] [Related]
7. Decoupling the influence of NOx in flue gas on the application of nano-amorphous selenium for mercury removal. Wang L, Li Y, Sun R, Zou R, Huang Y, Yu M, Liu J, Luo G, Yao H. Sci Total Environ; 2024 Nov 15; 951():175698. PubMed ID: 39179046 [Abstract] [Full Text] [Related]
8. The ignored emission of volatile organic compounds from iron ore sinter process. Li J, He X, Pei B, Li X, Ying D, Wang Y, Jia J. J Environ Sci (China); 2019 Mar 15; 77():282-290. PubMed ID: 30573092 [Abstract] [Full Text] [Related]
9. Cost-Effective Manganese Ore Sorbent for Elemental Mercury Removal from Flue Gas. Yang Y, Miao S, Liu J, Wang Z, Yu Y. Environ Sci Technol; 2019 Aug 20; 53(16):9957-9965. PubMed ID: 31369246 [Abstract] [Full Text] [Related]
11. Enhanced effect of in-situ generated ammonium salts aerosols on the removal of NOx from simulated flue gas. Tseng CH, Keener TC, Lee JY, Khang SJ. Environ Sci Technol; 2001 Aug 01; 35(15):3219-24. PubMed ID: 11506008 [Abstract] [Full Text] [Related]
14. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx. Sumathi S, Bhatia S, Lee KT, Mohamed AR. J Hazard Mater; 2010 Apr 15; 176(1-3):1093-6. PubMed ID: 20018447 [Abstract] [Full Text] [Related]
15. The low-temperature NO2 removal by tailoring metal node in porphyrin-based metal-organic frameworks. Shang S, Wen C, Yang C, Tian Y, Wang C, Shang J. Sci Total Environ; 2021 Dec 20; 801():149710. PubMed ID: 34438152 [Abstract] [Full Text] [Related]
16. Adsorption of NO, NO2 and H2O in divalent cation faujasite type zeolites: a density functional theory screening approach. Daouli A, Hessou EP, Monnier H, Dziurla MA, Hasnaoui A, Maurin G, Badawi M. Phys Chem Chem Phys; 2022 Jun 29; 24(25):15565-15578. PubMed ID: 35722820 [Abstract] [Full Text] [Related]
18. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas. Zheng M, Li C, Liu S, Gui M, Ni J. J Hazard Mater; 2016 Nov 15; 318():571-578. PubMed ID: 27469045 [Abstract] [Full Text] [Related]