These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 33230789

  • 1. Control over MoSe2 formation with vacuum-assisted selenization of one-step electrodeposited Cu-In-Ga-Se precursor layers.
    Mandati S, Misra P, Boosagulla D, Tata NR, Bulusu SV.
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):15123-15129. PubMed ID: 33230789
    [Abstract] [Full Text] [Related]

  • 2. A Comprehensive Study of One-Step Selenization Process for Cu(In1-x Ga x )Se2 Thin Film Solar Cells.
    Chen SC, Wang SW, Kuo SY, Juang JY, Lee PT, Luo CW, Wu KH, Kuo HC.
    Nanoscale Res Lett; 2017 Dec; 12(1):208. PubMed ID: 28330186
    [Abstract] [Full Text] [Related]

  • 3. Effect of Selenization Processes on CIGS Solar Cell Performance.
    Wu CH, Wu PW, Chen JH, Kao JY, Hsu CY.
    J Nanosci Nanotechnol; 2018 Jul 01; 18(7):5074-5081. PubMed ID: 29442696
    [Abstract] [Full Text] [Related]

  • 4. New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer.
    Klinkert T, Theys B, Patriarche G, Jubault M, Donsanti F, Guillemoles JF, Lincot D.
    J Chem Phys; 2016 Oct 21; 145(15):154702. PubMed ID: 27782451
    [Abstract] [Full Text] [Related]

  • 5. Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films.
    Harvey TB, Mori I, Stolle CJ, Bogart TD, Ostrowski DP, Glaz MS, Du J, Pernik DR, Akhavan VA, Kesrouani H, Vanden Bout DA, Korgel BA.
    ACS Appl Mater Interfaces; 2013 Sep 25; 5(18):9134-40. PubMed ID: 23957691
    [Abstract] [Full Text] [Related]

  • 6. Above 15% Efficient Directly Sputtered CIGS Solar Cells Enabled by a Modified Back-Contact Interface.
    Dai W, Gao Z, Li J, Qin S, Wang R, Xu H, Wang X, Gao C, Teng X, Zhang Y, Hao X, Wang Y, Yu W.
    ACS Appl Mater Interfaces; 2021 Oct 20; 13(41):49414-49422. PubMed ID: 34615348
    [Abstract] [Full Text] [Related]

  • 7. Effects of annealing atmosphere on the performance of Cu(InGa)Se2 films sputtered from quaternary targets.
    Zhang L, Yu Y, Yu J, Wei Y.
    R Soc Open Sci; 2020 Oct 20; 7(10):200662. PubMed ID: 33204451
    [Abstract] [Full Text] [Related]

  • 8. Microenvironment Created by SnSe2 Vapor and Pre-Selenization to Stabilize the Surface and Back Contact in Kesterite Solar Cells.
    Guo J, Mao Y, Ao J, Han Y, Cao C, Liu F, Bi J, Wang S, Zhang Y.
    Small; 2022 Nov 20; 18(47):e2203354. PubMed ID: 36180408
    [Abstract] [Full Text] [Related]

  • 9. Electrical impact of MoSe2 on CIGS thin-film solar cells.
    Hsiao KJ, Liu JD, Hsieh HH, Jiang TS.
    Phys Chem Chem Phys; 2013 Nov 07; 15(41):18174-8. PubMed ID: 24068110
    [Abstract] [Full Text] [Related]

  • 10. [Raman and Visible-Near Infrared Spectra of Cu(InGa)Se2 Films].
    Xu DM, Pan K, Liu XW, Wng XJ, Wang WZ, Liang CJ, Wang Z.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct 07; 36(10):3197-201. PubMed ID: 30222299
    [Abstract] [Full Text] [Related]

  • 11. [Raman and Visible-Near Infrared Spectra of Cu(InGa)Se2 Films].
    Xu DM, Pan K, Liu XW, Wang XJ, Wang WZ, Liang CJ, Wang Z.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct 07; 36(10):3197-201. PubMed ID: 30246510
    [Abstract] [Full Text] [Related]

  • 12. Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells.
    Woo HJ, Lee WJ, Koh EK, Jang SI, Kim S, Moon H, Kwon SH.
    Nanomaterials (Basel); 2021 Feb 02; 11(2):. PubMed ID: 33540729
    [Abstract] [Full Text] [Related]

  • 13. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe₂ Film during Selenization in Se+SnSe Vapor.
    Yao L, Ao J, Jeng MJ, Bi J, Gao S, Sun G, He Q, Zhou Z, Sun Y, Chang LB.
    Materials (Basel); 2016 Mar 29; 9(4):. PubMed ID: 28773366
    [Abstract] [Full Text] [Related]

  • 14. Improved efficiency of a large-area Cu(In,Ga)Se₂ solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process.
    Wu TT, Hu F, Huang JH, Chang CH, Lai CC, Yen YT, Huang HY, Hong HF, Wang ZM, Shen CH, Shieh JM, Chueh YL.
    ACS Appl Mater Interfaces; 2014 Apr 09; 6(7):4842-9. PubMed ID: 24571825
    [Abstract] [Full Text] [Related]

  • 15. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure.
    Yao L, Ao J, Jeng MJ, Bi J, Gao S, He Q, Zhou Z, Sun G, Sun Y, Chang LB, Chen JW.
    Nanoscale Res Lett; 2014 Apr 09; 9(1):678. PubMed ID: 25593559
    [Abstract] [Full Text] [Related]

  • 16. Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se2-Based Thin Film Solar Cells.
    Alhammadi S, Park H, Kim WK.
    Materials (Basel); 2019 Apr 26; 12(9):. PubMed ID: 31035494
    [Abstract] [Full Text] [Related]

  • 17. Effect of sodium diffusion on the properties of CIGS solar absorbers prepared using elemental Se in a two-step process.
    Li W, Yan X, Aberle AG, Venkataraj S.
    Sci Rep; 2019 Feb 25; 9(1):2637. PubMed ID: 30804384
    [Abstract] [Full Text] [Related]

  • 18. Influence of the Al-Doped ZnO Sputter-Deposition Temperature on Cu(In,Ga)Se2 Solar Cell Performance.
    Park H, Alhammadi S, Minnam Reddy VR, Park C, Kim WK.
    Nanomaterials (Basel); 2022 Sep 24; 12(19):. PubMed ID: 36234454
    [Abstract] [Full Text] [Related]

  • 19. Effect of Sodium Treatment on the Performance of Electrostatic Spray Assisted Vapour Deposited Copper-poor Cu(In,Ga)(S,Se) 2 Solar Cells.
    Wang M, Hossain MA, Choy KL.
    Sci Rep; 2017 Jul 28; 7(1):6788. PubMed ID: 28754902
    [Abstract] [Full Text] [Related]

  • 20. Cu(In,Ga)(S,Se)₂ thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film.
    Septina W, Kurihara M, Ikeda S, Nakajima Y, Hirano T, Kawasaki Y, Harada T, Matsumura M.
    ACS Appl Mater Interfaces; 2015 Apr 01; 7(12):6472-9. PubMed ID: 25774908
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.