These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
273 related items for PubMed ID: 33232441
1. D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain. Nijland JG, Shin HY, Dore E, Rudinatha D, de Waal PP, Driessen AJM. FEMS Yeast Res; 2021 Jan 16; 21(1):. PubMed ID: 33232441 [Abstract] [Full Text] [Related]
2. Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae. Papapetridis I, Verhoeven MD, Wiersma SJ, Goudriaan M, van Maris AJA, Pronk JT. FEMS Yeast Res; 2018 Sep 01; 18(6):. PubMed ID: 29771304 [Abstract] [Full Text] [Related]
3. Efficient, D-glucose insensitive, growth on D-xylose by an evolutionary engineered Saccharomyces cerevisiae strain. Nijland JG, Li X, Shin HY, de Waal PP, Driessen AJM. FEMS Yeast Res; 2019 Dec 01; 19(8):. PubMed ID: 31782779 [Abstract] [Full Text] [Related]
4. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS. PLoS One; 2013 Dec 01; 8(2):e57048. PubMed ID: 23468911 [Abstract] [Full Text] [Related]
5. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae. Nijland JG, Shin HY, Boender LGM, de Waal PP, Klaassen P, Driessen AJM. Appl Environ Microbiol; 2017 Jun 01; 83(11):. PubMed ID: 28363963 [Abstract] [Full Text] [Related]
6. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Shen MH, Song H, Li BZ, Yuan YJ. Biotechnol Lett; 2015 May 01; 37(5):1031-6. PubMed ID: 25548118 [Abstract] [Full Text] [Related]
7. Enhancement of xylose uptake in 2-deoxyglucose tolerant mutant of Saccharomyces cerevisiae. Kahar P, Taku K, Tanaka S. J Biosci Bioeng; 2011 May 01; 111(5):557-63. PubMed ID: 21257343 [Abstract] [Full Text] [Related]
8. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Matsushika A, Goshima T, Hoshino T. Microb Cell Fact; 2014 Jan 28; 13():16. PubMed ID: 24467867 [Abstract] [Full Text] [Related]
9. Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production. Huang M, Cui X, Zhang P, Jin Z, Li H, Liu J, Jiang Z. Prep Biochem Biotechnol; 2024 Sep 28; 54(8):1058-1067. PubMed ID: 38349751 [Abstract] [Full Text] [Related]
10. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants. Osiro KO, Borgström C, Brink DP, Fjölnisdóttir BL, Gorwa-Grauslund MF. Microb Cell Fact; 2019 May 23; 18(1):88. PubMed ID: 31122246 [Abstract] [Full Text] [Related]
11. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC, Turner TL, Jin YS. J Ind Microbiol Biotechnol; 2017 Mar 23; 44(3):387-395. PubMed ID: 28070721 [Abstract] [Full Text] [Related]
12. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain. Caballero A, Ramos JL. Microbiology (Reading); 2017 Apr 23; 163(4):442-452. PubMed ID: 28443812 [Abstract] [Full Text] [Related]
13. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD, Rosa CA, Hector RE, Dien BS, Mertens JA, Ayub MAZ. J Ind Microbiol Biotechnol; 2017 Nov 23; 44(11):1575-1588. PubMed ID: 28891041 [Abstract] [Full Text] [Related]
15. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Bonini BM, Van Vaeck C, Larsson C, Gustafsson L, Ma P, Winderickx J, Van Dijck P, Thevelein JM. Biochem J; 2000 Aug 15; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852 [Abstract] [Full Text] [Related]
16. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ. Appl Environ Microbiol; 2009 Feb 15; 75(4):907-14. PubMed ID: 19074603 [Abstract] [Full Text] [Related]
17. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Kim SR, Park YC, Jin YS, Seo JH. Biotechnol Adv; 2013 Nov 15; 31(6):851-61. PubMed ID: 23524005 [Abstract] [Full Text] [Related]
18. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X. Appl Microbiol Biotechnol; 2012 Nov 15; 96(4):1079-91. PubMed ID: 23053078 [Abstract] [Full Text] [Related]
19. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. Ghosh A, Zhao H, Price ND. PLoS One; 2011 Nov 15; 6(11):e27316. PubMed ID: 22076150 [Abstract] [Full Text] [Related]
20. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK, Sedlak M, Khan A, Ho NW. Appl Microbiol Biotechnol; 2010 Aug 15; 87(5):1803-11. PubMed ID: 20449743 [Abstract] [Full Text] [Related] Page: [Next] [New Search]