These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


263 related items for PubMed ID: 33244079

  • 1. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum.
    Chacón-Orozco JG, Bueno CJ, Shapiro-Ilan DI, Hazir S, Leite LG, Harakava R.
    Sci Rep; 2020 Nov 26; 10(1):20649. PubMed ID: 33244079
    [Abstract] [Full Text] [Related]

  • 2. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii.
    Cimen H, Touray M, Gulsen SH, Erincik O, Wenski SL, Bode HB, Shapiro-Ilan D, Hazir S.
    Appl Microbiol Biotechnol; 2021 Jul 26; 105(13):5517-5528. PubMed ID: 34250572
    [Abstract] [Full Text] [Related]

  • 3. Volatile Compounds of Endophytic Bacillus spp. have Biocontrol Activity Against Sclerotinia sclerotiorum.
    Massawe VC, Hanif A, Farzand A, Mburu DK, Ochola SO, Wu L, Tahir HAS, Gu Q, Wu H, Gao X.
    Phytopathology; 2018 Dec 26; 108(12):1373-1385. PubMed ID: 29927356
    [Abstract] [Full Text] [Related]

  • 4. Disease caused by Neofusicoccum parvum in pruning wounds of grapevine shoots and its control by Trichoderma spp. and Xenorhabdus szentirmaii.
    Otoya-Martinez N, Leite LG, Harakava R, Touray M, Hazir S, Chacon-Orozco J, Bueno CJ.
    Fungal Biol; 2023 Dec 26; 127(1-2):865-871. PubMed ID: 36746558
    [Abstract] [Full Text] [Related]

  • 5. Trans-cinnamic acid and Xenorhabdus szentirmaii metabolites synergize the potency of some commercial fungicides.
    Hazir S, Shapiro-Ilan DI, Bock CH, Leite LG.
    J Invertebr Pathol; 2017 May 26; 145():1-8. PubMed ID: 28322849
    [Abstract] [Full Text] [Related]

  • 6. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti.
    Fukruksa C, Yimthin T, Suwannaroj M, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A.
    Parasit Vectors; 2017 Sep 21; 10(1):440. PubMed ID: 28934970
    [Abstract] [Full Text] [Related]

  • 7. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.
    Zhang F, Ge H, Zhang F, Guo N, Wang Y, Chen L, Ji X, Li C.
    Plant Physiol Biochem; 2016 Mar 21; 100():64-74. PubMed ID: 26774866
    [Abstract] [Full Text] [Related]

  • 8. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae).
    Eroglu C, Cimen H, Ulug D, Karagoz M, Hazir S, Cakmak I.
    J Invertebr Pathol; 2019 Jan 21; 160():61-66. PubMed ID: 30528928
    [Abstract] [Full Text] [Related]

  • 9. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains.
    Sabaté DC, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC.
    Microbiol Res; 2018 Jun 21; 211():21-30. PubMed ID: 29705203
    [Abstract] [Full Text] [Related]

  • 10. Impact of fluazinam on morphological and physiological characteristics of Sclerotinia sclerotiorum.
    Hou YP, Mao XW, Wu LY, Wang JX, Mi B, Zhou MG.
    Pestic Biochem Physiol; 2019 Mar 21; 155():81-89. PubMed ID: 30857631
    [Abstract] [Full Text] [Related]

  • 11. Metabolic response of soybean plants to Sclerotinia sclerotiorum infection.
    de Oliveira CS, Lião LM, Alcantara GB.
    Phytochemistry; 2019 Nov 21; 167():112099. PubMed ID: 31476575
    [Abstract] [Full Text] [Related]

  • 12. Characterization of an antifungal compound produced by Bacillus sp. strain A(5) F that inhibits Sclerotinia sclerotiorum.
    Kumar A, Saini S, Wray V, Nimtz M, Prakash A, Johri BN.
    J Basic Microbiol; 2012 Dec 21; 52(6):670-8. PubMed ID: 22359152
    [Abstract] [Full Text] [Related]

  • 13. Resistance against Sclerotinia sclerotiorum in soybean involves a reprogramming of the phenylpropanoid pathway and up-regulation of antifungal activity targeting ergosterol biosynthesis.
    Ranjan A, Westrick NM, Jain S, Piotrowski JS, Ranjan M, Kessens R, Stiegman L, Grau CR, Conley SP, Smith DL, Kabbage M.
    Plant Biotechnol J; 2019 Aug 21; 17(8):1567-1581. PubMed ID: 30672092
    [Abstract] [Full Text] [Related]

  • 14. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.
    Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E.
    J Appl Microbiol; 2012 Jan 21; 112(1):159-74. PubMed ID: 22017648
    [Abstract] [Full Text] [Related]

  • 15. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes.
    Chaston JM, Suen G, Tucker SL, Andersen AW, Bhasin A, Bode E, Bode HB, Brachmann AO, Cowles CE, Cowles KN, Darby C, de Léon L, Drace K, Du Z, Givaudan A, Herbert Tran EE, Jewell KA, Knack JJ, Krasomil-Osterfeld KC, Kukor R, Lanois A, Latreille P, Leimgruber NK, Lipke CM, Liu R, Lu X, Martens EC, Marri PR, Médigue C, Menard ML, Miller NM, Morales-Soto N, Norton S, Ogier JC, Orchard SS, Park D, Park Y, Qurollo BA, Sugar DR, Richards GR, Rouy Z, Slominski B, Slominski K, Snyder H, Tjaden BC, van der Hoeven R, Welch RD, Wheeler C, Xiang B, Barbazuk B, Gaudriault S, Goodner B, Slater SC, Forst S, Goldman BS, Goodrich-Blair H.
    PLoS One; 2011 Jan 21; 6(11):e27909. PubMed ID: 22125637
    [Abstract] [Full Text] [Related]

  • 16. Overexpression of the chitinase gene CmCH1 from Coniothyrium minitans renders enhanced resistance to Sclerotinia sclerotiorum in soybean.
    Yang X, Yang J, Li H, Niu L, Xing G, Zhang Y, Xu W, Zhao Q, Li Q, Dong Y.
    Transgenic Res; 2020 Apr 21; 29(2):187-198. PubMed ID: 31970612
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination.
    Cheng Q, Hu C, Jia W, Cai M, Zhao Y, Tang Y, Yang D, Zhou Y, Sun X, Zhao X.
    Ecotoxicol Environ Saf; 2019 Nov 15; 183():109503. PubMed ID: 31394376
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.