These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 33246810
1. Nano scale zero valent iron production methods applied to contaminated sites remediation: An overview of production and environmental aspects. Visentin C, Trentin AWDS, Braun AB, Thomé A. J Hazard Mater; 2021 May 15; 410():124614. PubMed ID: 33246810 [Abstract] [Full Text] [Related]
2. Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation. Visentin C, Trentin AWDS, Braun AB, Thomé A. Environ Pollut; 2021 Jan 01; 268(Pt B):115915. PubMed ID: 33126160 [Abstract] [Full Text] [Related]
3. Are contaminated soil and groundwater remediation with nanoscale zero-valent iron sustainable? An analysis of case studies. Visentin C, Braun AB, Reginatto C, Cecchin I, Vanzetto GV, Thomé A. Environ Pollut; 2024 Jul 01; 352():124167. PubMed ID: 38754689 [Abstract] [Full Text] [Related]
4. Social life cycle assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation. Visentin C, da Silva Trentin AW, Braun AB, Thomé A. Environ Sci Pollut Res Int; 2022 Mar 01; 29(15):21603-21620. PubMed ID: 34762242 [Abstract] [Full Text] [Related]
5. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A. J Contam Hydrol; 2010 Nov 25; 118(3-4):165-83. PubMed ID: 20813426 [Abstract] [Full Text] [Related]
6. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D. Water Res; 2016 Sep 01; 100():245-266. PubMed ID: 27206054 [Abstract] [Full Text] [Related]
7. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation. Galdames A, Ruiz-Rubio L, Orueta M, Sánchez-Arzalluz M, Vilas-Vilela JL. Int J Environ Res Public Health; 2020 Aug 11; 17(16):. PubMed ID: 32796749 [Abstract] [Full Text] [Related]
8. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review. Li Y, Zhao HP, Zhu L. Sci Total Environ; 2021 Mar 15; 760():143413. PubMed ID: 33246720 [Abstract] [Full Text] [Related]
9. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Jiang D, Zeng G, Huang D, Chen M, Zhang C, Huang C, Wan J. Environ Res; 2018 May 15; 163():217-227. PubMed ID: 29459304 [Abstract] [Full Text] [Related]
10. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review. Xue W, Huang D, Zeng G, Wan J, Cheng M, Zhang C, Hu C, Li J. Chemosphere; 2018 Nov 15; 210():1145-1156. PubMed ID: 30208540 [Abstract] [Full Text] [Related]
11. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Liu X, Yang L, Zhao H, Wang W. Sci Total Environ; 2020 Mar 15; 708():134479. PubMed ID: 31796288 [Abstract] [Full Text] [Related]
12. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil. Pei G, Zhu Y, Wen J, Pei Y, Li H. Environ Pollut; 2020 Jan 15; 256():113407. PubMed ID: 31672374 [Abstract] [Full Text] [Related]
13. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants? Wang S, Chen S, Wang Y, Low A, Lu Q, Qiu R. Biotechnol Adv; 2016 Dec 15; 34(8):1384-1395. PubMed ID: 27765723 [Abstract] [Full Text] [Related]
14. Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils. Oleszczuk P, Kołtowski M. Chemosphere; 2017 Feb 15; 168():1467-1476. PubMed ID: 27916262 [Abstract] [Full Text] [Related]
15. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: Arsenic immobilization associated with iron transformation. Fan J, Chen X, Xu Z, Xu X, Zhao L, Qiu H, Cao X. J Hazard Mater; 2020 Nov 05; 398():122901. PubMed ID: 32470770 [Abstract] [Full Text] [Related]
16. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. Chekli L, Brunetti G, Marzouk ER, Maoz-Shen A, Smith E, Naidu R, Shon HK, Lombi E, Donner E. Environ Pollut; 2016 Sep 05; 216():636-645. PubMed ID: 27357483 [Abstract] [Full Text] [Related]
17. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Lefevre E, Bossa N, Wiesner MR, Gunsch CK. Sci Total Environ; 2016 Sep 15; 565():889-901. PubMed ID: 26897610 [Abstract] [Full Text] [Related]
18. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Jiamjitrpanich W, Polprasert C, Parkpian P, Delaune RD, Jugsujinda A. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep 15; 45(3):263-74. PubMed ID: 20390867 [Abstract] [Full Text] [Related]
19. Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution. Zhu L, Tong L, Zhao N, Li J, Lv Y. Chemosphere; 2019 Mar 15; 219():493-503. PubMed ID: 30551116 [Abstract] [Full Text] [Related]
20. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Su H, Fang Z, Tsang PE, Fang J, Zhao D. Environ Pollut; 2016 Jul 15; 214():94-100. PubMed ID: 27064615 [Abstract] [Full Text] [Related] Page: [Next] [New Search]