These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 33251654

  • 1. Deciphering the origin of Aspergillus flavus NRRL21882, the active biocontrol agent of Afla-Guard®.
    Chang PK, Chang TD, Katoh K.
    Lett Appl Microbiol; 2021 May; 72(5):509-516. PubMed ID: 33251654
    [Abstract] [Full Text] [Related]

  • 2. Genome-wide nucleotide variation distinguishes Aspergillus flavus from Aspergillus oryzae and helps to reveal origins of atoxigenic A. flavus biocontrol strains.
    Chang PK.
    J Appl Microbiol; 2019 Nov; 127(5):1511-1520. PubMed ID: 31429498
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Genome sequence and comparative analyses of atoxigenic Aspergillus flavus WRRL 1519.
    Yin G, Hua SST, Pennerman KK, Yu J, Bu L, Sayre RT, Bennett JW.
    Mycologia; 2018 Nov; 110(3):482-493. PubMed ID: 29969379
    [Abstract] [Full Text] [Related]

  • 5. Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain.
    Alshannaq AF, Gibbons JG, Lee MK, Han KH, Hong SB, Yu JH.
    Sci Rep; 2018 Nov 15; 8(1):16871. PubMed ID: 30442975
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Recombination and lineage-specific gene loss in the aflatoxin gene cluster of Aspergillus flavus.
    Moore GG, Singh R, Horn BW, Carbone I.
    Mol Ecol; 2009 Dec 15; 18(23):4870-87. PubMed ID: 19895419
    [Abstract] [Full Text] [Related]

  • 8. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae.
    Geiser DM, Dorner JW, Horn BW, Taylor JW.
    Fungal Genet Biol; 2000 Dec 15; 31(3):169-79. PubMed ID: 11273679
    [Abstract] [Full Text] [Related]

  • 9. Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations.
    Chang PK, Abbas HK, Weaver MA, Ehrlich KC, Scharfenstein LL, Cotty PJ.
    Int J Food Microbiol; 2012 Mar 15; 154(3):192-6. PubMed ID: 22285533
    [Abstract] [Full Text] [Related]

  • 10. Comparative genome analysis of Aspergillus flavus clinically isolated in Japan.
    Toyotome T, Hamada S, Yamaguchi S, Takahashi H, Kondoh D, Takino M, Kanesaki Y, Kamei K.
    DNA Res; 2019 Feb 01; 26(1):95-103. PubMed ID: 30520983
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae?
    Chang PK, Ehrlich KC.
    Int J Food Microbiol; 2010 Apr 15; 138(3):189-99. PubMed ID: 20163884
    [Abstract] [Full Text] [Related]

  • 14. Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control.
    Molo MS, White JB, Cornish V, Gell RM, Baars O, Singh R, Carbone MA, Isakeit T, Wise KA, Woloshuk CP, Bluhm BH, Horn BW, Heiniger RW, Carbone I.
    PLoS One; 2022 Apr 15; 17(10):e0276556. PubMed ID: 36301851
    [Abstract] [Full Text] [Related]

  • 15. High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae.
    Chang PK, Scharfenstein LL, Solorzano CD, Abbas HK, Hua SS, Jones WA, Zablotowicz RM.
    Int J Food Microbiol; 2015 May 04; 200():66-71. PubMed ID: 25689355
    [Abstract] [Full Text] [Related]

  • 16. Biocontrol strain Aspergillus flavus WRRL 1519 has differences in chromosomal organization and an increased number of transposon-like elements compared to other strains.
    Pennerman KK, Gonzalez J, Chenoweth LR, Bennett JW, Yin G, Hua SST.
    Mol Genet Genomics; 2018 Dec 04; 293(6):1507-1522. PubMed ID: 30099586
    [Abstract] [Full Text] [Related]

  • 17. Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize.
    Abbas HK, Zablotowicz RM, Horn BW, Phillips NA, Johnson BJ, Jin X, Abel CA.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Feb 04; 28(2):198-208. PubMed ID: 21259141
    [Abstract] [Full Text] [Related]

  • 18. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents.
    Alaniz Zanon MS, Clemente MP, Chulze SN.
    Int J Food Microbiol; 2018 Jul 20; 277():58-63. PubMed ID: 29684766
    [Abstract] [Full Text] [Related]

  • 19. Isolation and characterization of Aspergillus flavus strains in China.
    Mamo FT, Shang B, Selvaraj JN, Wang Y, Liu Y.
    J Microbiol; 2018 Feb 20; 56(2):119-127. PubMed ID: 29392555
    [Abstract] [Full Text] [Related]

  • 20. Genetic diversity of aflatoxin-producing Aspergillus flavus isolated from selected groundnut growing agro-ecological zones of Uganda.
    Acur A, Arias RS, Odongo S, Tuhaise S, Ssekandi J, Adriko J, Muhanguzi D, Buah S, Kiggundu A.
    BMC Microbiol; 2020 Aug 14; 20(1):252. PubMed ID: 32795262
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.