These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 33265516

  • 1. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
    Kaniadakis G, Hristopulos DT.
    Entropy (Basel); 2018 Jun 01; 20(6):. PubMed ID: 33265516
    [Abstract] [Full Text] [Related]

  • 2. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V, Nobre FD, Curado EM.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct 01; 76(4 Pt 1):041123. PubMed ID: 17994952
    [Abstract] [Full Text] [Related]

  • 3. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
    Grima R, Thomas P, Straube AV.
    J Chem Phys; 2011 Aug 28; 135(8):084103. PubMed ID: 21895155
    [Abstract] [Full Text] [Related]

  • 4. Solving the Fokker-Planck kinetic equation on a lattice.
    Moroni D, Rotenberg B, Hansen JP, Succi S, Melchionna S.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun 28; 73(6 Pt 2):066707. PubMed ID: 16907023
    [Abstract] [Full Text] [Related]

  • 5. Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation.
    Curado EM, Nobre FD.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb 28; 67(2 Pt 1):021107. PubMed ID: 12636653
    [Abstract] [Full Text] [Related]

  • 6. Canonical quantization of nonlinear many-body systems.
    Scarfone AM.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May 28; 71(5 Pt 1):051103. PubMed ID: 16089517
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation.
    Maoutsa D, Reich S, Opper M.
    Entropy (Basel); 2020 Jul 22; 22(8):. PubMed ID: 33286573
    [Abstract] [Full Text] [Related]

  • 10. Entropy production and nonlinear Fokker-Planck equations.
    Casas GA, Nobre FD, Curado EM.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec 22; 86(6 Pt 1):061136. PubMed ID: 23367922
    [Abstract] [Full Text] [Related]

  • 11. Non-Additive Entropic Forms and Evolution Equations for Continuous and Discrete Probabilities.
    Curado EMF, Nobre FD.
    Entropy (Basel); 2023 Jul 27; 25(8):. PubMed ID: 37628161
    [Abstract] [Full Text] [Related]

  • 12. Invariance principle and model reduction for the Fokker-Planck equation.
    Karlin IV.
    Philos Trans A Math Phys Eng Sci; 2016 Nov 13; 374(2080):. PubMed ID: 27698039
    [Abstract] [Full Text] [Related]

  • 13. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD.
    Phys Rev E; 2018 May 13; 97(5-1):052144. PubMed ID: 29906998
    [Abstract] [Full Text] [Related]

  • 14. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system.
    Shiino M.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May 13; 67(5 Pt 2):056118. PubMed ID: 12786231
    [Abstract] [Full Text] [Related]

  • 15. Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution.
    Sicuro G, Rapčan P, Tsallis C.
    Phys Rev E; 2016 Dec 13; 94(6-1):062117. PubMed ID: 28085323
    [Abstract] [Full Text] [Related]

  • 16. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag.
    Plastino AR, Curado EMF, Nobre FD, Tsallis C.
    Phys Rev E; 2018 Feb 13; 97(2-1):022120. PubMed ID: 29548132
    [Abstract] [Full Text] [Related]

  • 17. Data driven adaptive Gaussian mixture model for solving Fokker-Planck equation.
    Sun W, Feng J, Su J, Liang Y.
    Chaos; 2022 Mar 13; 32(3):033131. PubMed ID: 35364842
    [Abstract] [Full Text] [Related]

  • 18. Nonlinear Fokker-Planck Equation Approach to Systems of Interacting Particles: Thermostatistical Features Related to the Range of the Interactions.
    Plastino AR, Wedemann RS.
    Entropy (Basel); 2020 Jan 31; 22(2):. PubMed ID: 33285938
    [Abstract] [Full Text] [Related]

  • 19. Relaxation of the distribution function tails for systems described by Fokker-Planck equations.
    Chavanis PH, Lemou M.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec 31; 72(6 Pt 1):061106. PubMed ID: 16485930
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.