These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 33278993

  • 21. Superior biolubricant from a species of red microalga.
    Arad SM, Rapoport L, Moshkovich A, van Moppes D, Karpasas M, Golan R, Golan Y.
    Langmuir; 2006 Aug 15; 22(17):7313-7. PubMed ID: 16893231
    [Abstract] [Full Text] [Related]

  • 22. Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum.
    Bernaerts TMM, Kyomugasho C, Van Looveren N, Gheysen L, Foubert I, Hendrickx ME, Van Loey AM.
    Carbohydr Polym; 2018 Sep 01; 195():542-550. PubMed ID: 29805010
    [Abstract] [Full Text] [Related]

  • 23. Harvesting Porphyridium purpureum using polyacrylamide polymers and alkaline bases and their impact on biomass quality.
    Vu HP, Nguyen LN, Vu MT, Labeeuw L, Emmerton B, Commault AS, Ralph PJ, Mahlia TMI, Nghiem LD.
    Sci Total Environ; 2021 Feb 10; 755(Pt 1):142412. PubMed ID: 33032127
    [Abstract] [Full Text] [Related]

  • 24. Filterability of exopolysaccharides solutions from the red microalga Porphyridium cruentum by tangential filtration on a polymeric membrane.
    Zaouk L, Massé A, Bourseau P, Taha S, Rabiller-Baudry M, Jubeau S, Teychené B, Pruvost J, Jaouen P.
    Environ Technol; 2020 Apr 10; 41(9):1167-1184. PubMed ID: 30205740
    [Abstract] [Full Text] [Related]

  • 25. Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum.
    Coward T, Fuentes-Grünewald C, Silkina A, Oatley-Radcliffe DL, Llewellyn G, Lovitt RW.
    Bioresour Technol; 2016 Dec 10; 221():607-615. PubMed ID: 27693726
    [Abstract] [Full Text] [Related]

  • 26. Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum.
    Lutzu GA, Zhang L, Zhang Z, Liu T.
    Bioprocess Biosyst Eng; 2017 Jan 10; 40(1):73-83. PubMed ID: 27614620
    [Abstract] [Full Text] [Related]

  • 27. Improvement of exopolysaccharide production by Porphyridium marinum.
    Soanen N, Da Silva E, Gardarin C, Michaud P, Laroche C.
    Bioresour Technol; 2016 Aug 10; 213():231-238. PubMed ID: 26944455
    [Abstract] [Full Text] [Related]

  • 28. Physicochemical characterization and emulsifying properties of a novel exopolysaccharide produced by haloarchaeon Haloferax mucosum.
    López-Ortega MA, Rodríguez-Hernández AI, Camacho-Ruíz RM, Córdova J, López-Cuellar MDR, Chavarría-Hernández N, González-García Y.
    Int J Biol Macromol; 2020 Jan 01; 142():152-162. PubMed ID: 31525414
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities.
    Poli A, Anzelmo G, Nicolaus B.
    Mar Drugs; 2010 Jun 03; 8(6):1779-802. PubMed ID: 20631870
    [Abstract] [Full Text] [Related]

  • 31. Effects of Silver Nanoparticles on the Red Microalga Porphyridium purpureum CNMN-AR-02, Cultivated on Two Nutrient Media.
    Rudi L, Cepoi L, Chiriac T, Djur S, Valuta A, Miscu V.
    Mar Drugs; 2024 May 01; 22(5):. PubMed ID: 38786599
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Effect of Pseudoalteromonas sp. MEBiC 03485 on biomass production and sulfated polysaccharide biosynthesis in Porphyridium cruentum UTEX 161.
    Han SI, Jeon MS, Heo YM, Kim S, Choi YE.
    Bioresour Technol; 2020 Apr 01; 302():122791. PubMed ID: 31981805
    [Abstract] [Full Text] [Related]

  • 34. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.
    Zhu P, Long G, Ni J, Tong M.
    Environ Sci Technol; 2009 Aug 01; 43(15):5699-704. PubMed ID: 19731665
    [Abstract] [Full Text] [Related]

  • 35. Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety.
    Chentir I, Hamdi M, Doumandji A, HadjSadok A, Ouada HB, Nasri M, Jridi M.
    Int J Biol Macromol; 2017 Dec 01; 105(Pt 2):1412-1420. PubMed ID: 28688944
    [Abstract] [Full Text] [Related]

  • 36. Scale-up cultivation enhanced arachidonic acid accumulation by red microalgae Porphyridium purpureum.
    Chang J, Le K, Song X, Jiao K, Zeng X, Ling X, Shi T, Tang X, Sun Y, Lin L.
    Bioprocess Biosyst Eng; 2017 Dec 01; 40(12):1763-1773. PubMed ID: 28836004
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. What Is in Store for EPS Microalgae in the Next Decade?
    Pierre G, Delattre C, Dubessay P, Jubeau S, Vialleix C, Cadoret JP, Probert I, Michaud P.
    Molecules; 2019 Nov 25; 24(23):. PubMed ID: 31775355
    [Abstract] [Full Text] [Related]

  • 39. Physiological and transcriptome analysis elucidates the metabolic mechanism of versatile Porphyridium purpureum under nitrogen deprivation for exopolysaccharides accumulation.
    Ji L, Li S, Chen C, Jin H, Wu H, Fan J.
    Bioresour Bioprocess; 2021 Aug 12; 8(1):73. PubMed ID: 38650296
    [Abstract] [Full Text] [Related]

  • 40. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid.
    Kavitha MD, Kathiresan S, Bhattacharya S, Sarada R.
    J Food Sci Technol; 2016 May 12; 53(5):2270-8. PubMed ID: 27407193
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.