These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 3329041

  • 1. Identification and characterization of four new GCD genes in Saccharomyces cerevisiae.
    Niederberger P, Aebi M, Hütter R.
    Curr Genet; 1986; 10(9):657-64. PubMed ID: 3329041
    [Abstract] [Full Text] [Related]

  • 2. gcd12 mutations are gcn3-dependent alleles of GCD2, a negative regulator of GCN4 in the general amino acid control of Saccharomyces cerevisiae.
    Paddon CJ, Hinnebusch AG.
    Genetics; 1989 Jul; 122(3):543-50. PubMed ID: 2668116
    [Abstract] [Full Text] [Related]

  • 3. The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae.
    Hannig EM, Williams NP, Wek RC, Hinnebusch AG.
    Genetics; 1990 Nov; 126(3):549-62. PubMed ID: 2249755
    [Abstract] [Full Text] [Related]

  • 4. Negative regulatory gene for general control of amino acid biosynthesis in Saccharomyces cerevisiae.
    Myers PL, Skvirsky RC, Greenberg ML, Greer H.
    Mol Cell Biol; 1986 Sep; 6(9):3150-5. PubMed ID: 3537730
    [Abstract] [Full Text] [Related]

  • 5. A new negative control gene for amino acid biosynthesis in Saccharomyces cerevisiae.
    Skvirsky RC, Greenberg ML, Myers PL, Greer H.
    Curr Genet; 1986 Sep; 10(7):495-501. PubMed ID: 3327608
    [Abstract] [Full Text] [Related]

  • 6. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Harashima S, Hinnebusch AG.
    Mol Cell Biol; 1986 Nov; 6(11):3990-8. PubMed ID: 3540603
    [Abstract] [Full Text] [Related]

  • 7. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae.
    Cuesta R, Hinnebusch AG, Tamame M.
    Genetics; 1998 Mar; 148(3):1007-20. PubMed ID: 9539420
    [Abstract] [Full Text] [Related]

  • 8. Guanine nucleotide exchange factor for eukaryotic translation initiation factor 2 in Saccharomyces cerevisiae: interactions between the essential subunits GCD2, GCD6, and GCD7 and the regulatory subunit GCN3.
    Bushman JL, Foiani M, Cigan AM, Paddon CJ, Hinnebusch AG.
    Mol Cell Biol; 1993 Aug; 13(8):4618-31. PubMed ID: 8336705
    [Abstract] [Full Text] [Related]

  • 9. New positive and negative regulators for general control of amino acid biosynthesis in Saccharomyces cerevisiae.
    Greenberg ML, Myers PL, Skvirsky RC, Greer H.
    Mol Cell Biol; 1986 May; 6(5):1820-9. PubMed ID: 3537709
    [Abstract] [Full Text] [Related]

  • 10. Amino acid sequence similarity between GCN3 and GCD2, positive and negative translational regulators of GCN4: evidence for antagonism by competition.
    Paddon CJ, Hannig EM, Hinnebusch AG.
    Genetics; 1989 Jul; 122(3):551-9. PubMed ID: 2668117
    [Abstract] [Full Text] [Related]

  • 11. Interactions between positive and negative regulators of GCN4 controlling gene expression and entry into the yeast cell cycle.
    Harashima S, Hannig EM, Hinnebusch AG.
    Genetics; 1987 Nov; 117(3):409-19. PubMed ID: 3319768
    [Abstract] [Full Text] [Related]

  • 12. Mutations in the structural genes for eukaryotic initiation factors 2 alpha and 2 beta of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA.
    Williams NP, Hinnebusch AG, Donahue TF.
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7515-9. PubMed ID: 2678106
    [Abstract] [Full Text] [Related]

  • 13. Saccharomyces cerevisiae ER membrane protein complex subunit 4 (EMC4) plays a crucial role in eIF2B-mediated translation regulation and survival under stress conditions.
    Sharma S, Sourirajan A, Baumler DJ, Dev K.
    J Genet Eng Biotechnol; 2020 Jun 01; 18(1):15. PubMed ID: 32476094
    [Abstract] [Full Text] [Related]

  • 14. Evidence for translational regulation of the activator of general amino acid control in yeast.
    Hinnebusch AG.
    Proc Natl Acad Sci U S A; 1984 Oct 01; 81(20):6442-6. PubMed ID: 6387704
    [Abstract] [Full Text] [Related]

  • 15. Mutations affecting the activity and the regulation of the general amino-acid permease of Saccharomyces cerevisiae. Localisation of the cis-acting dominant pgr regulatory mutation in the structural gene of this permease.
    Grenson M, Acheroy B.
    Mol Gen Genet; 1982 Oct 01; 188(2):261-5. PubMed ID: 6759873
    [Abstract] [Full Text] [Related]

  • 16. Genetic and molecular mapping of the pma1 mutation conferring vanadate resistance to the plasma membrane ATPase from Saccharomyces cerevisiae.
    Ulaszewski S, Balzi E, Goffeau A.
    Mol Gen Genet; 1987 Apr 01; 207(1):38-46. PubMed ID: 2885723
    [Abstract] [Full Text] [Related]

  • 17. MAL63 codes for a positive regulator of maltose fermentation in Saccharomyces cerevisiae.
    Chang YS, Dubin RA, Perkins E, Forrest D, Michels CA, Needleman RB.
    Curr Genet; 1988 Sep 01; 14(3):201-9. PubMed ID: 3058330
    [Abstract] [Full Text] [Related]

  • 18. Characterization of AAT1: a gene involved in the regulation of amino acid transport in Saccharomyces cerevisiae.
    Garrett JM.
    J Gen Microbiol; 1989 Sep 01; 135(9):2429-37. PubMed ID: 2697749
    [Abstract] [Full Text] [Related]

  • 19. Arrangement of genes TRP1 and TRP3 of Saccharomyces cerevisiae strains.
    Braus G, Furter R, Prantl F, Niederberger P, Hütter R.
    Arch Microbiol; 1985 Sep 01; 142(4):383-8. PubMed ID: 2998296
    [Abstract] [Full Text] [Related]

  • 20. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability.
    Wek RC, Jackson BM, Hinnebusch AG.
    Proc Natl Acad Sci U S A; 1989 Jun 01; 86(12):4579-83. PubMed ID: 2660141
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.