These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


303 related items for PubMed ID: 33301333

  • 1. Scaffold-Constrained Molecular Generation.
    Langevin M, Minoux H, Levesque M, Bianciotto M.
    J Chem Inf Model; 2020 Dec 28; 60(12):5637-5646. PubMed ID: 33301333
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Generative Recurrent Networks for De Novo Drug Design.
    Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G.
    Mol Inform; 2018 Jan 28; 37(1-2):. PubMed ID: 29095571
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries.
    Bian Y, Xie XQ.
    Cells; 2022 Mar 07; 11(5):. PubMed ID: 35269537
    [Abstract] [Full Text] [Related]

  • 6. The power of deep learning to ligand-based novel drug discovery.
    Baskin II.
    Expert Opin Drug Discov; 2020 Jul 07; 15(7):755-764. PubMed ID: 32228116
    [Abstract] [Full Text] [Related]

  • 7. De Novo Molecule Design Using Molecular Generative Models Constrained by Ligand-Protein Interactions.
    Zhang J, Chen H.
    J Chem Inf Model; 2022 Jul 25; 62(14):3291-3306. PubMed ID: 35793555
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F, Li M, Min X, Li C, Zeng X.
    Brief Bioinform; 2021 Nov 05; 22(6):. PubMed ID: 34410338
    [Abstract] [Full Text] [Related]

  • 10. De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning.
    Ye G.
    J Comput Aided Mol Des; 2024 Apr 22; 38(1):20. PubMed ID: 38647700
    [Abstract] [Full Text] [Related]

  • 11. Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES.
    Bjerrum EJ, Margreitter C, Blaschke T, Kolarova S, de Castro RL.
    J Comput Aided Mol Des; 2023 Aug 22; 37(8):373-394. PubMed ID: 37329395
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Bidirectional Molecule Generation with Recurrent Neural Networks.
    Grisoni F, Moret M, Lingwood R, Schneider G.
    J Chem Inf Model; 2020 Mar 23; 60(3):1175-1183. PubMed ID: 31904964
    [Abstract] [Full Text] [Related]

  • 15. De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and reinforcement learning.
    Hu P, Zou J, Yu J, Shi S.
    J Mol Model; 2023 Mar 30; 29(4):121. PubMed ID: 36991180
    [Abstract] [Full Text] [Related]

  • 16. Deep learning for molecular generation.
    Xu Y, Lin K, Wang S, Wang L, Cai C, Song C, Lai L, Pei J.
    Future Med Chem; 2019 Mar 30; 11(6):567-597. PubMed ID: 30698019
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. A Scaffold-based Deep Generative Model Considering Molecular Stereochemical Information.
    Xu T, Wang M, Liu X, Feng D, Zhu Y, Fan Z, Rao S, Lu J.
    Mol Inform; 2022 Dec 30; 41(12):e2200088. PubMed ID: 36031563
    [Abstract] [Full Text] [Related]

  • 20. Molecular substructure tree generative model for de novo drug design.
    Wang S, Song T, Zhang S, Jiang M, Wei Z, Li Z.
    Brief Bioinform; 2022 Mar 10; 23(2):. PubMed ID: 35039853
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.