These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
440 related items for PubMed ID: 33309942
1. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Wang X, Feng H, Wang Y, Wang M, Xie X, Chang H, Wang L, Qu J, Sun K, He W, Wang C, Dai C, Chu Z, Tian C, Yu N, Zhang X, Liu H, Wang E. Mol Plant; 2021 Mar 01; 14(3):503-516. PubMed ID: 33309942 [Abstract] [Full Text] [Related]
2. Lotus japonicus Symbiosis Genes Impact Microbial Interactions between Symbionts and Multikingdom Commensal Communities. Thiergart T, Zgadzaj R, Bozsóki Z, Garrido-Oter R, Radutoiu S, Schulze-Lefert P. mBio; 2019 Oct 08; 10(5):. PubMed ID: 31594815 [Abstract] [Full Text] [Related]
3. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Brown SP, Grillo MA, Podowski JC, Heath KD. Microbiome; 2020 Sep 28; 8(1):139. PubMed ID: 32988416 [Abstract] [Full Text] [Related]
4. Cell autonomous and non-cell autonomous control of rhizobial and mycorrhizal infection in Medicago truncatula. Rival P, Bono JJ, Gough C, Bensmihen S, Rosenberg C. Plant Signal Behav; 2013 Feb 28; 8(2):e22999. PubMed ID: 23221781 [Abstract] [Full Text] [Related]
5. A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species. Sui XL, Zhang T, Tian YQ, Xue RJ, Li AR. New Phytol; 2019 Jan 28; 221(1):470-481. PubMed ID: 30078224 [Abstract] [Full Text] [Related]
6. Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. Tromas A, Parizot B, Diagne N, Champion A, Hocher V, Cissoko M, Crabos A, Prodjinoto H, Lahouze B, Bogusz D, Laplaze L, Svistoonoff S. PLoS One; 2012 Jan 28; 7(9):e44742. PubMed ID: 22970303 [Abstract] [Full Text] [Related]
7. Recent advances in actinorhizal symbiosis signaling. Froussart E, Bonneau J, Franche C, Bogusz D. Plant Mol Biol; 2016 Apr 28; 90(6):613-22. PubMed ID: 26873697 [Abstract] [Full Text] [Related]
8. Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. Sakamoto K, Ogiwara N, Kaji T, Sugimoto Y, Ueno M, Sonoda M, Matsui A, Ishida J, Tanaka M, Totoki Y, Shinozaki K, Seki M. J Plant Res; 2019 Jul 28; 132(4):541-568. PubMed ID: 31165947 [Abstract] [Full Text] [Related]
9. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. Xue L, Almario J, Fabiańska I, Saridis G, Bucher M. New Phytol; 2019 Oct 28; 224(1):409-420. PubMed ID: 31125425 [Abstract] [Full Text] [Related]
10. Mycorrhizal and rhizobial interactions influence model grassland plant community structure and productivity. Zhou J, Wilson GWT, Cobb AB, Zhang Y, Liu L, Zhang X, Sun F. Mycorrhiza; 2022 Jan 28; 32(1):15-32. PubMed ID: 35037106 [Abstract] [Full Text] [Related]
11. Population-level variation in host plant response to multiple microbial mutualists. Franklin JB, Hockey K, Maherali H. Am J Bot; 2020 Oct 28; 107(10):1389-1400. PubMed ID: 33029783 [Abstract] [Full Text] [Related]
12. Life histories of symbiotic rhizobia and mycorrhizal fungi. Denison RF, Kiers ET. Curr Biol; 2011 Sep 27; 21(18):R775-85. PubMed ID: 21959168 [Abstract] [Full Text] [Related]
13. Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Nadal M, Paszkowski U. Curr Opin Plant Biol; 2013 Aug 27; 16(4):473-9. PubMed ID: 23834765 [Abstract] [Full Text] [Related]
14. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, Okabe Y, Umehara Y, Miyamoto A, Kobae Y, Akiyama K, Kaku H, Nishizawa Y, Shibuya N, Nakagawa T. Plant Cell Physiol; 2014 Nov 27; 55(11):1864-72. PubMed ID: 25231970 [Abstract] [Full Text] [Related]
15. The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis. Svistoonoff S, Benabdoun FM, Nambiar-Veetil M, Imanishi L, Vaissayre V, Cesari S, Diagne N, Hocher V, de Billy F, Bonneau J, Wall L, Ykhlef N, Rosenberg C, Bogusz D, Franche C, Gherbi H. PLoS One; 2013 Nov 27; 8(5):e64515. PubMed ID: 23741336 [Abstract] [Full Text] [Related]
16. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses. Banasiak J, Jamruszka T, Murray JD, Jasiński M. Plant Physiol; 2021 Dec 04; 187(4):2071-2091. PubMed ID: 34618047 [Abstract] [Full Text] [Related]
17. [Evolution of nitrogen-fixing symbioses based on the migration of bacteria from mycorrhizal fungi and soil into the plant tissues]. Provorov NA, Shtark OY, Dolgikh EA. Zh Obshch Biol; 2016 Dec 04; 77(5):329-45. PubMed ID: 30024143 [Abstract] [Full Text] [Related]
18. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism. Gano-Cohen KA, Stokes PJ, Blanton MA, Wendlandt CE, Hollowell AC, Regus JU, Kim D, Patel S, Pahua VJ, Sachs JL. Appl Environ Microbiol; 2016 Sep 01; 82(17):5259-68. PubMed ID: 27316960 [Abstract] [Full Text] [Related]
19. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude. Khan MH, Meghvansi MK, Gupta R, Veer V. J Plant Physiol; 2015 Sep 15; 189():105-12. PubMed ID: 26555273 [Abstract] [Full Text] [Related]
20. Signaling in the arbuscular mycorrhizal symbiosis. Harrison MJ. Annu Rev Microbiol; 2005 Sep 15; 59():19-42. PubMed ID: 16153162 [Abstract] [Full Text] [Related] Page: [Next] [New Search]