These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 33310685

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations.
    Li F, Beardall J, Collins S, Gao K.
    Glob Chang Biol; 2017 Jan; 23(1):127-137. PubMed ID: 27629864
    [Abstract] [Full Text] [Related]

  • 3. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH.
    Shi D, Hong H, Su X, Liao L, Chang S, Lin W.
    J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184
    [Abstract] [Full Text] [Related]

  • 4. Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO2.
    Huang A, Wu S, Gu W, Li Y, Xie X, Wang G.
    BMC Biotechnol; 2019 Jul 26; 19(1):53. PubMed ID: 31349823
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs.
    Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, Li P, Jin P, Xia J.
    Sci Total Environ; 2021 Jun 01; 771():145167. PubMed ID: 33736151
    [Abstract] [Full Text] [Related]

  • 8. Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum.
    Li W, Gao K, Beardall J.
    PLoS One; 2012 Jun 01; 7(12):e51590. PubMed ID: 23236517
    [Abstract] [Full Text] [Related]

  • 9. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure.
    Dai X, Zhang J, Zeng X, Huang J, Lin J, Lu Y, Liang S, Ye M, Xiao M, Zhao J, Overmans S, Xia J, Jin P.
    Mar Pollut Bull; 2022 Oct 01; 183():114056. PubMed ID: 36058179
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Combined effects of CO2-driven ocean acidification and Cd stress in the marine environment: Enhanced tolerance of Phaeodactylum tricornutum to Cd exposure.
    Dong F, Zhu X, Qian W, Wang P, Wang J.
    Mar Pollut Bull; 2020 Jan 01; 150():110594. PubMed ID: 31727316
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming.
    Kang EJ, Han AR, Kim JH, Kim IN, Lee S, Min JO, Nam BR, Choi YJ, Edwards MS, Diaz-Pulido G, Kim C.
    Sci Total Environ; 2021 May 15; 769():144443. PubMed ID: 33493906
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii.
    Goldman JA, Bender ML, Morel FM.
    Photosynth Res; 2017 Apr 15; 132(1):83-93. PubMed ID: 28062941
    [Abstract] [Full Text] [Related]

  • 19. Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom.
    Li W, Wang T, Campbell DA, Gao K.
    Mar Environ Res; 2020 Sep 15; 160():104965. PubMed ID: 32291249
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.