These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 3331346
1. Crystallography and site-directed mutagenesis of yeast triosephosphate isomerase: what can we learn about catalysis from a "simple" enzyme? Alber TC, Davenport RC, Giammona DA, Lolis E, Petsko GA, Ringe D. Cold Spring Harb Symp Quant Biol; 1987; 52():603-13. PubMed ID: 3331346 [No Abstract] [Full Text] [Related]
2. Probing the catalytic mechanism of yeast triose phosphate isomerase by site-specific mutagenesis. Petsko GA, Davenport RC, Frankel D, RaiBhandary UL. Biochem Soc Trans; 1984 Apr; 12(2):229-32. PubMed ID: 6373437 [No Abstract] [Full Text] [Related]
3. Subunit interface of triosephosphate isomerase: site-directed mutagenesis and characterization of the altered enzyme. Casal JI, Ahern TJ, Davenport RC, Petsko GA, Klibanov AM. Biochemistry; 1987 Mar 10; 26(5):1258-64. PubMed ID: 3552044 [Abstract] [Full Text] [Related]
4. Control of oligomeric enzyme thermostability by protein engineering. Ahern TJ, Casal JI, Petsko GA, Klibanov AM. Proc Natl Acad Sci U S A; 1987 Feb 10; 84(3):675-9. PubMed ID: 3543933 [Abstract] [Full Text] [Related]
5. Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis. Lolis E, Petsko GA. Biochemistry; 1990 Jul 17; 29(28):6619-25. PubMed ID: 2204418 [Abstract] [Full Text] [Related]
6. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism. Nickbarg EB, Davenport RC, Petsko GA, Knowles JR. Biochemistry; 1988 Aug 09; 27(16):5948-60. PubMed ID: 2847777 [Abstract] [Full Text] [Related]
7. Effects of a buried cysteine-to-serine mutation on yeast triosephosphate isomerase structure and stability. Hernández-Santoyo A, Domínguez-Ramírez L, Reyes-López CA, González-Mondragón E, Hernández-Arana A, Rodríguez-Romero A. Int J Mol Sci; 2012 Aug 09; 13(8):10010-10021. PubMed ID: 22949845 [Abstract] [Full Text] [Related]
10. Searching sequence space by definably random mutagenesis: improving the catalytic potency of an enzyme. Hermes JD, Blacklow SC, Knowles JR. Proc Natl Acad Sci U S A; 1990 Jan 09; 87(2):696-700. PubMed ID: 1967829 [Abstract] [Full Text] [Related]
11. The mechanistic pathway of a mutant triosephosphate isomerase. Raines RT, Knowles JR. Ann N Y Acad Sci; 1986 Jan 09; 471():266-71. PubMed ID: 3460499 [No Abstract] [Full Text] [Related]
14. The time scale of the catalytic loop motion in triosephosphate isomerase. Rozovsky S, McDermott AE. J Mol Biol; 2001 Jun 29; 310(1):259-70. PubMed ID: 11419951 [Abstract] [Full Text] [Related]
15. Apparent equivalence of the active-site glutamyl residue and the essential group with pKalpha 6.0 in triosephosphate isomerase. Hartman FC, Ratrie H. Biochem Biophys Res Commun; 1977 Jul 25; 77(2):746-52. PubMed ID: 20092 [No Abstract] [Full Text] [Related]
19. Reaction energetics of a mutant triosephosphate isomerase in which the active-site glutamate has been changed to aspartate. Raines RT, Sutton EL, Straus DR, Gilbert W, Knowles JR. Biochemistry; 1986 Nov 04; 25(22):7142-54. PubMed ID: 2879556 [Abstract] [Full Text] [Related]
20. Triosephosphate isomerase requires a positively charged active site: the role of lysine-12. Lodi PJ, Chang LC, Knowles JR, Komives EA. Biochemistry; 1994 Mar 15; 33(10):2809-14. PubMed ID: 8130193 [Abstract] [Full Text] [Related] Page: [Next] [New Search]