These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 3331406

  • 1. Na+-linked active transport of ascorbate into cultured bovine retinal pigment epithelial cells: heterologous inhibition by glucose.
    Khatami M.
    Membr Biochem; ; 7(2):115-30. PubMed ID: 3331406
    [Abstract] [Full Text] [Related]

  • 2. Ascorbate transport in cultured cat retinal pigment epithelial cells.
    Khatami M, Stramm LE, Rockey JH.
    Exp Eye Res; 1986 Oct; 43(4):607-15. PubMed ID: 3792463
    [Abstract] [Full Text] [Related]

  • 3. Regulation of MI transport in retinal pigment epithelium by sugars, amiloride, and pH gradients: potential impairment of pump-leak balance in diabetic maculopathy.
    Khatami M.
    Membr Biochem; 1990 Oct; 9(4):279-92. PubMed ID: 1967073
    [Abstract] [Full Text] [Related]

  • 4. Kinetics of ascorbate transport by cultured retinal capillary pericytes. Inhibition by glucose.
    Khatami M, Li WY, Rockey JH.
    Invest Ophthalmol Vis Sci; 1986 Nov; 27(11):1665-71. PubMed ID: 3771147
    [Abstract] [Full Text] [Related]

  • 5. Direct regulation of Na(+)-dependent myo-inositol transport by sugars in retinal pigment epithelium: role of phorbol ester and staurosporin.
    Khatami M, Cernadas M, Geroff AJ, Chandra P, Cohen MF.
    Membr Biochem; 1990 Nov; 9(4):263-77. PubMed ID: 2152143
    [Abstract] [Full Text] [Related]

  • 6. Regulation of uptake of inositol by glucose in cultured retinal pigment epithelial cells.
    Khatami M, Rockey JH.
    Biochem Cell Biol; 1988 Sep; 66(9):951-7. PubMed ID: 3142498
    [Abstract] [Full Text] [Related]

  • 7. Active transport of ascorbic acid across the retinal pigment epithelium of the bullfrog.
    DiMattio J, Streitman J.
    Curr Eye Res; 1991 Oct; 10(10):959-65. PubMed ID: 1659972
    [Abstract] [Full Text] [Related]

  • 8. Kinetics of myo-inositol transport in corneal endothelial cells: diverse effects of sugars and implications in corneal deutergensence [corrected].
    Khatami M.
    Membr Biochem; 1990 Oct; 9(2):91-106. PubMed ID: 2103937
    [Abstract] [Full Text] [Related]

  • 9. Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by Sorbinil.
    Li W, Chan LS, Khatami M, Rockey JH.
    Biochim Biophys Acta; 1986 May 28; 857(2):198-208. PubMed ID: 3085711
    [Abstract] [Full Text] [Related]

  • 10. Facilitated glucose transport across the retinal pigment epithelium of the bullfrog (Rana catesbeiana).
    DiMattio J, Streitman J.
    Exp Eye Res; 1986 Jul 28; 43(1):15-28. PubMed ID: 3525201
    [Abstract] [Full Text] [Related]

  • 11. Active ion transport pathways in the bovine retinal pigment epithelium.
    Miller SS, Edelman JL.
    J Physiol; 1990 May 28; 424():283-300. PubMed ID: 1697344
    [Abstract] [Full Text] [Related]

  • 12. Carrier-dependent and carrier-independent uptake of myo-inositol in cultured retinal pigment epithelial cells: activation by heat and concentration.
    Khatami M.
    Biochem Cell Biol; 1988 Sep 28; 66(9):942-50. PubMed ID: 3190883
    [Abstract] [Full Text] [Related]

  • 13. The influence of ascorbic acid on active sodium transport in cultured rabbit nonpigmented ciliary epithelium.
    Hou Y, Pierce WM, Delamere NA.
    Invest Ophthalmol Vis Sci; 1998 Jan 28; 39(1):143-50. PubMed ID: 9430555
    [Abstract] [Full Text] [Related]

  • 14. Characterization of brimonidine transport in retinal pigment epithelium.
    Zhang N, Kannan R, Okamoto CT, Ryan SJ, Lee VH, Hinton DR.
    Invest Ophthalmol Vis Sci; 2006 Jan 28; 47(1):287-94. PubMed ID: 16384975
    [Abstract] [Full Text] [Related]

  • 15. The effects of elevated glucose on Na+/K(+)-ATPase of cultured bovine retinal pigment epithelial cells measured by a new nonradioactive rubidium uptake assay.
    Crider JY, Yorio T, Sharif NA, Griffin BW.
    J Ocul Pharmacol Ther; 1997 Aug 28; 13(4):337-52. PubMed ID: 9261769
    [Abstract] [Full Text] [Related]

  • 16. High-affinity sodium-dependent uptake of ascorbic acid by rat osteoblasts.
    Wilson JX, Dixon SJ.
    J Membr Biol; 1989 Oct 28; 111(1):83-91. PubMed ID: 2810353
    [Abstract] [Full Text] [Related]

  • 17. Electrogenic Na+-ascorbate cotransport in cultured bovine pigmented ciliary epithelial cells.
    Helbig H, Korbmacher C, Wohlfarth J, Berweck S, Kühner D, Wiederholt M.
    Am J Physiol; 1989 Jan 28; 256(1 Pt 1):C44-9. PubMed ID: 2912136
    [Abstract] [Full Text] [Related]

  • 18. Ascorbate uptake by microvascular endothelial cells of rat skeletal muscle.
    Wilson JX, Dixon SJ, Yu J, Nees S, Tyml K.
    Microcirculation; 1996 Jun 28; 3(2):211-21. PubMed ID: 8839443
    [Abstract] [Full Text] [Related]

  • 19. Sodium-dependent ascorbic and dehydroascorbic acid uptake by SV-40-transformed retinal pigment epithelial cells.
    Lam KW, Yu HS, Glickman RD, Lin T.
    Ophthalmic Res; 1993 Jun 28; 25(2):100-7. PubMed ID: 8391673
    [Abstract] [Full Text] [Related]

  • 20. The saturation characteristics of glucose transport in bovine retinal pigment epithelium.
    To CH, Cheung KK, Chiu SH, Lai HM, Lung KS.
    Yan Ke Xue Bao; 1998 Sep 28; 14(3):126-9. PubMed ID: 12580019
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.