These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
274 related items for PubMed ID: 33332529
1. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. Fathi Z, Tramontin LRR, Ebrahimipour G, Borodina I, Darvishi F. FEMS Yeast Res; 2021 Jan 16; 21(1):. PubMed ID: 33332529 [Abstract] [Full Text] [Related]
2. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ. Appl Environ Microbiol; 2007 Jul 16; 73(13):4342-50. PubMed ID: 17496128 [Abstract] [Full Text] [Related]
3. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Sun L, Atkinson CA, Lee YG, Jin YS. Biotechnol Bioeng; 2020 Nov 16; 117(11):3522-3532. PubMed ID: 33616900 [Abstract] [Full Text] [Related]
4. Expression of native and mutant extracellular lipases fromYarrowia lipolytica in Saccharomyces cerevisiae. Darvishi F. Microb Biotechnol; 2012 Sep 16; 5(5):634-41. PubMed ID: 22702371 [Abstract] [Full Text] [Related]
5. Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma. Shi F, Zhan W, Li Y, Wang X. World J Microbiol Biotechnol; 2014 Jan 16; 30(1):125-33. PubMed ID: 23861041 [Abstract] [Full Text] [Related]
6. Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene. Guo Q, Peng QQ, Li YW, Yan F, Wang YT, Ye C, Shi TQ. Crit Rev Biotechnol; 2024 May 16; 44(3):337-351. PubMed ID: 36779332 [Abstract] [Full Text] [Related]
7. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Lange N, Steinbüchel A. Appl Microbiol Biotechnol; 2011 Sep 16; 91(6):1611-22. PubMed ID: 21573686 [Abstract] [Full Text] [Related]
8. Induction of point and structural mutations in engineered yeast Saccharomyces cerevisiae improve carotenoid production. Yamada R, Ando K, Sakaguchi R, Matsumoto T, Ogino H. World J Microbiol Biotechnol; 2024 Jun 03; 40(7):230. PubMed ID: 38829459 [Abstract] [Full Text] [Related]
9. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. Li Q, Sun Z, Li J, Zhang Y. FEMS Microbiol Lett; 2013 Aug 03; 345(2):94-101. PubMed ID: 23718229 [Abstract] [Full Text] [Related]
10. Metabolic Engineering of Non-carotenoid-Producing Yeast Yarrowia lipolytica for the Biosynthesis of Zeaxanthin. Xie Y, Chen S, Xiong X. Front Microbiol; 2021 Aug 03; 12():699235. PubMed ID: 34690947 [Abstract] [Full Text] [Related]
11. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Bu X, Lin JY, Duan CQ, Koffas MAG, Yan GL. Microb Cell Fact; 2022 Jan 04; 21(1):3. PubMed ID: 34983533 [Abstract] [Full Text] [Related]
12. Enhanced β-carotene production in Yarrowia lipolytica through the metabolic and fermentation engineering. Jing Y, Wang J, Gao H, Jiang Y, Jiang W, Jiang M, Xin F, Zhang W. J Ind Microbiol Biotechnol; 2023 Feb 17; 50(1):. PubMed ID: 37055369 [Abstract] [Full Text] [Related]
13. Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Liu WS, Pan XX, Jia B, Zhao HY, Xu L, Liu Y, Yan YJ. Appl Microbiol Biotechnol; 2010 Oct 17; 88(4):885-91. PubMed ID: 20676630 [Abstract] [Full Text] [Related]
14. Morphological and Metabolic Engineering of Yarrowia lipolytica to Increase β-Carotene Production. Liu M, Zhang J, Ye J, Qi Q, Hou J. ACS Synth Biol; 2021 Dec 17; 10(12):3551-3560. PubMed ID: 34762415 [Abstract] [Full Text] [Related]
15. [Production of β-carotene by metabolically engineered Saccharomyces cerevisiae]. Wang B, Shi M, Wang D, Xu J, Liu Y, Yang H, Dai Z, Zhang X. Sheng Wu Gong Cheng Xue Bao; 2014 Aug 17; 30(8):1204-16. PubMed ID: 25423750 [Abstract] [Full Text] [Related]
17. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H. Biotechnol Bioeng; 2014 Jan 02; 111(1):125-33. PubMed ID: 23860829 [Abstract] [Full Text] [Related]
18. Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Ukibe K, Hashida K, Yoshida N, Takagi H. Appl Environ Microbiol; 2009 Nov 02; 75(22):7205-11. PubMed ID: 19801484 [Abstract] [Full Text] [Related]
19. Modulation of gene expression by cocktail δ-integration to improve carotenoid production in Saccharomyces cerevisiae. Yamada R, Yamauchi A, Ando Y, Kumata Y, Ogino H. Bioresour Technol; 2018 Nov 02; 268():616-621. PubMed ID: 30138874 [Abstract] [Full Text] [Related]
20. Engineering of Yarrowia lipolytica for production of astaxanthin. Kildegaard KR, Adiego-Pérez B, Doménech Belda D, Khangura JK, Holkenbrink C, Borodina I. Synth Syst Biotechnol; 2017 Dec 02; 2(4):287-294. PubMed ID: 29552653 [Abstract] [Full Text] [Related] Page: [Next] [New Search]