These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 33335171

  • 21. Response of PM2.5 chemical composition to the emission reduction and meteorological variation during the COVID-19 lockdown.
    Gong Y, Zhou H, Chun X, Wan Z, Wang J, Liu C.
    Chemosphere; 2024 Sep; 363():142844. PubMed ID: 39004145
    [Abstract] [Full Text] [Related]

  • 22. Slower than expected reduction in annual PM2.5 in Xi'an revealed by machine learning-based meteorological normalization.
    Wang M, Zhang Z, Yuan Q, Li X, Han S, Lam Y, Cui L, Huang Y, Cao J, Lee SC.
    Sci Total Environ; 2022 Oct 01; 841():156740. PubMed ID: 35716759
    [Abstract] [Full Text] [Related]

  • 23. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F, Anderson HR, Armstrong B, Atkinson R, Barratt B, Beevers S, Derwent D, Green D, Mudway I, Wilkinson P, HEI Health Review Committee.
    Res Rep Health Eff Inst; 2011 Apr 01; (155):5-71. PubMed ID: 21830496
    [Abstract] [Full Text] [Related]

  • 24. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism.
    Chen Z, Chen D, Zhao C, Kwan MP, Cai J, Zhuang Y, Zhao B, Wang X, Chen B, Yang J, Li R, He B, Gao B, Wang K, Xu B.
    Environ Int; 2020 Jun 01; 139():105558. PubMed ID: 32278201
    [Abstract] [Full Text] [Related]

  • 25. An observation-based adjustment method of regional contribution estimation from upwind emissions to downwind PM2.5 concentrations.
    Bae M, Kim BU, Kim HC, Woo JH, Kim S.
    Environ Int; 2022 May 01; 163():107214. PubMed ID: 35385813
    [Abstract] [Full Text] [Related]

  • 26. Why did air quality experience little improvement during the COVID-19 lockdown in megacities, northeast China?
    Fu D, Shi X, Zuo J, Yabo SD, Li J, Li B, Li H, Lu L, Tang B, Qi H, Ma J.
    Environ Res; 2023 Mar 15; 221():115282. PubMed ID: 36639012
    [Abstract] [Full Text] [Related]

  • 27. Driving factors to air pollutant reductions during the implementation of intensive controlling policies in 2020 in Ulsan, South Korea.
    Vuong QT, Park MK, Do TV, Thang PQ, Choi SD.
    Environ Pollut; 2022 Jan 01; 292(Pt B):118380. PubMed ID: 34666098
    [Abstract] [Full Text] [Related]

  • 28. Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta.
    Wang S, Zhang Y, Ma J, Zhu S, Shen J, Wang P, Zhang H.
    Sci Total Environ; 2021 Feb 20; 756():143868. PubMed ID: 33302072
    [Abstract] [Full Text] [Related]

  • 29. Revealing the driving effect of emissions and meteorology on PM2.5 and O3 trends through a new algorithmic model.
    Wang D, Zhao W, Ying N, Nie L, Shao X, Zhang W, Dang H, Zhang X.
    Chemosphere; 2022 May 20; 295():133756. PubMed ID: 35149019
    [Abstract] [Full Text] [Related]

  • 30. Investigating air pollutant concentrations, impact factors, and emission control strategies in western China by using a regional climate-chemistry model.
    Yang J, Kang S, Ji Z, Yin X, Tripathee L.
    Chemosphere; 2020 May 20; 246():125767. PubMed ID: 31927371
    [Abstract] [Full Text] [Related]

  • 31. Model elucidating the sources and formation mechanisms of severe haze pollution over Northeast mega-city cluster in China.
    Yang T, Gbaguidi A, Yan P, Zhang W, Zhu L, Yao X, Wang Z, Chen H.
    Environ Pollut; 2017 Nov 20; 230():692-700. PubMed ID: 28715774
    [Abstract] [Full Text] [Related]

  • 32. The London low emission zone baseline study.
    Kelly F, Armstrong B, Atkinson R, Anderson HR, Barratt B, Beevers S, Cook D, Green D, Derwent D, Mudway I, Wilkinson P, HEI Health Review Committee.
    Res Rep Health Eff Inst; 2011 Nov 20; (163):3-79. PubMed ID: 22315924
    [Abstract] [Full Text] [Related]

  • 33. New Insights into Unexpected Severe PM2.5 Pollution during the SARS and COVID-19 Pandemic Periods in Beijing.
    Zuo P, Zong Z, Zheng B, Bi J, Zhang Q, Li W, Zhang J, Yang X, Chen Z, Yang H, Lu D, Zhang Q, Liu Q, Jiang G.
    Environ Sci Technol; 2022 Jan 04; 56(1):155-164. PubMed ID: 34910459
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts.
    Huang L, Zhu Y, Wang Q, Zhu A, Liu Z, Wang Y, Allen DT, Li L.
    Sci Total Environ; 2021 Oct 01; 789():147935. PubMed ID: 34049144
    [Abstract] [Full Text] [Related]

  • 36. Response of PM2.5 pollution to meteorological and anthropogenic emissions changes during COVID-19 lockdown in Hunan Province based on WRF-Chem model.
    Dai S, Chen X, Liang J, Li X, Li S, Chen G, Chen Z, Bin J, Tang Y, Li X.
    Environ Pollut; 2023 Aug 15; 331(Pt 2):121886. PubMed ID: 37236582
    [Abstract] [Full Text] [Related]

  • 37. Long-range air pollution transport in East Asia during the first week of the COVID-19 lockdown in China.
    Griffith SM, Huang WS, Lin CC, Chen YC, Chang KE, Lin TH, Wang SH, Lin NH.
    Sci Total Environ; 2020 Nov 01; 741():140214. PubMed ID: 32599400
    [Abstract] [Full Text] [Related]

  • 38. National air pollution distribution in China and related geographic, gaseous pollutant, and socio-economic factors.
    Liang D, Wang YQ, Wang YJ, Ma C.
    Environ Pollut; 2019 Jul 01; 250():998-1009. PubMed ID: 31085487
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.