These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


268 related items for PubMed ID: 33338235

  • 21. An effective antibiofilm agent against Pseudomonas aeruginosa biofilm from traditional Thai herbal recipes used for wound treatments.
    Chusri S, Jittanon W, Maneenoon K, Voravuthikunchai SP.
    Microb Drug Resist; 2013 Oct; 19(5):337-43. PubMed ID: 23600560
    [Abstract] [Full Text] [Related]

  • 22. Leaf extract of Azadirachta indica (neem): a potential antibiofilm agent for Pseudomonas aeruginosa.
    Harjai K, Bala A, Gupta RK, Sharma R.
    Pathog Dis; 2013 Oct; 69(1):62-65. PubMed ID: 23737302
    [Abstract] [Full Text] [Related]

  • 23. 3-Amino-4-aminoximidofurazan derivatives: small molecules possessing antimicrobial and antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa.
    Das MC, Paul S, Gupta P, Tribedi P, Sarkar S, Manna D, Bhattacharjee S.
    J Appl Microbiol; 2016 Apr; 120(4):842-59. PubMed ID: 26785169
    [Abstract] [Full Text] [Related]

  • 24. Activity of N-acetyl-L-cysteine against biofilm of Staphylococcus aureus and Pseudomonas aeruginosa on orthopedic prosthetic materials.
    Drago L, De Vecchi E, Mattina R, Romanò CL.
    Int J Artif Organs; 2013 Jan; 36(1):39-46. PubMed ID: 23280076
    [Abstract] [Full Text] [Related]

  • 25. Intragenic Antimicrobial Peptide Hs02 Hampers the Proliferation of Single- and Dual-Species Biofilms of P. aeruginosa and S. aureus: A Promising Agent for Mitigation of Biofilm-Associated Infections.
    Bessa LJ, Manickchand JR, Eaton P, Leite JRSA, Brand GD, Gameiro P.
    Int J Mol Sci; 2019 Jul 23; 20(14):. PubMed ID: 31340580
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers.
    Weldrick PJ, Hardman MJ, Paunov VN.
    ACS Appl Mater Interfaces; 2019 Nov 27; 11(47):43902-43919. PubMed ID: 31718141
    [Abstract] [Full Text] [Related]

  • 29. Bacteria competing with the adhesion and biofilm formation by Staphylococcus aureus.
    Sadowska B, Walencka E, Wieckowska-Szakiel M, Różalska B.
    Folia Microbiol (Praha); 2010 Sep 27; 55(5):497-501. PubMed ID: 20941586
    [Abstract] [Full Text] [Related]

  • 30. Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms.
    Lefebvre E, Vighetto C, Di Martino P, Larreta Garde V, Seyer D.
    Int J Antimicrob Agents; 2016 Aug 27; 48(2):181-8. PubMed ID: 27424598
    [Abstract] [Full Text] [Related]

  • 31. Antimicrobial and antibiofilm potential of Curcuma longa Linn. Rhizome extract against biofilm producing Staphylococcus aureus and Pseudomonas aeruginosa isolates.
    Suwal N, Subba RK, Paudyal P, Khanal DP, Panthi M, Suwal N, Nassan MA, Alqarni M, Batiha GE, Koirala N.
    Cell Mol Biol (Noisy-le-grand); 2021 Jan 31; 67(1):17-23. PubMed ID: 34817373
    [Abstract] [Full Text] [Related]

  • 32. Antibiofilm activity of Fmoc-phenylalanine against Gram-positive and Gram-negative bacterial biofilms.
    Singh H, Gahane A, Singh V, Ghosh S, Thakur A.
    J Antibiot (Tokyo); 2021 Jun 31; 74(6):407-416. PubMed ID: 33637856
    [Abstract] [Full Text] [Related]

  • 33. Acceleration of the formation of biofilms on contact lens surfaces in the presence of neutrophil-derived cellular debris is conserved across multiple genera.
    Patel NB, Hinojosa JA, Zhu M, Robertson DM.
    Mol Vis; 2018 Jun 31; 24():94-104. PubMed ID: 29422767
    [Abstract] [Full Text] [Related]

  • 34. Pseudomonas aeruginosa and Staphylococcus aureus communication in biofilm infections: insights through network and database construction.
    Magalhães AP, Jorge P, Pereira MO.
    Crit Rev Microbiol; 2019 Jun 31; 45(5-6):712-728. PubMed ID: 31835971
    [Abstract] [Full Text] [Related]

  • 35. The Effect of Lysozyme on Reducing Biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis: An In Vitro Examination.
    Hukić M, Seljmo D, Ramovic A, Ibrišimović MA, Dogan S, Hukic J, Bojic EF.
    Microb Drug Resist; 2018 May 31; 24(4):353-358. PubMed ID: 28922066
    [Abstract] [Full Text] [Related]

  • 36. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections.
    Hou W, Sun X, Wang Z, Zhang Y.
    Invest Ophthalmol Vis Sci; 2012 Aug 17; 53(9):5624-31. PubMed ID: 22736609
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Combinatorial effects of antibiotics and enzymes against dual-species Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the wound-like medium.
    Fanaei Pirlar R, Emaneini M, Beigverdi R, Banar M, B van Leeuwen W, Jabalameli F.
    PLoS One; 2020 Aug 17; 15(6):e0235093. PubMed ID: 32584878
    [Abstract] [Full Text] [Related]

  • 40. Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro.
    Maddocks SE, Jenkins RE, Rowlands RS, Purdy KJ, Cooper RA.
    Future Microbiol; 2013 Dec 17; 8(12):1523-36. PubMed ID: 24266353
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.