These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 33338531
21. Titania/lignin hybrid materials as a novel support for α-amylase immobilization: A comprehensive study. Klapiszewski Ł, Zdarta J, Jesionowski T. Colloids Surf B Biointerfaces; 2018 Feb 01; 162():90-97. PubMed ID: 29169053 [Abstract] [Full Text] [Related]
22. Propitious catalytic response of immobilized α-amylase from G. thermoleovorans in modified APTES-Fe3O4 NPs for industrial bio-processing. Rajashekarappa KK, Basavarajappa A, Neelagund SE, Mahadevan GD, Achur RN, Kumar P. Int J Biol Macromol; 2024 Jun 01; 269(Pt 1):132021. PubMed ID: 38697441 [Abstract] [Full Text] [Related]
23. Modification of chitosan-bead support materials with L-lysine and L-asparagine for α-amylase immobilization. Yazgan I, Turner EG, Cronmiller LE, Tepe M, Ozturk TK, Elibol M. Bioprocess Biosyst Eng; 2018 Mar 01; 41(3):423-434. PubMed ID: 29222588 [Abstract] [Full Text] [Related]
24. Chloro-Modified Magnetic Fe3O4@MCM-41 Core-Shell Nanoparticles for L-Asparaginase Immobilization with Improved Catalytic Activity, Reusability, and Storage Stability. Ulu A, Noma SAA, Koytepe S, Ates B. Appl Biochem Biotechnol; 2019 Mar 01; 187(3):938-956. PubMed ID: 30101367 [Abstract] [Full Text] [Related]
25. Cross-linked esterase aggregates (CLEAs) using nanoparticles as immobilization matrix. Doraiswamy N, Sarathi M, Pennathur G. Prep Biochem Biotechnol; 2019 Mar 01; 49(3):270-278. PubMed ID: 30794034 [Abstract] [Full Text] [Related]
26. Some properties of free and immobilized alpha-amylase from Penicillium griseofulvum by solid state fermentation. Ertan F, Yagar H, Balkan B. Prep Biochem Biotechnol; 2006 Mar 01; 36(1):81-91. PubMed ID: 16428140 [Abstract] [Full Text] [Related]
27. Magnetic Fe3O4@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization. Ulu A, Noma SAA, Koytepe S, Ates B. Artif Cells Nanomed Biotechnol; 2018 Mar 01; 46(sup2):1035-1045. PubMed ID: 29873527 [Abstract] [Full Text] [Related]
28. Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability. Almulaiky YQ, Khalil NM, El-Shishtawy RM, Altalhi T, Algamal Y, Aldhahri M, Al-Harbi SA, Allehyani ES, Bilal M, Mohammed MM. Int J Biol Macromol; 2021 Jan 15; 167():299-308. PubMed ID: 33275970 [Abstract] [Full Text] [Related]
29. Magnetite nanoparticle as a support for stabilization of chondroitinase ABCI. Askaripour H, Vossoughi M, Khajeh K, Alemzadeh I. Artif Cells Nanomed Biotechnol; 2019 Dec 15; 47(1):2721-2728. PubMed ID: 31272239 [Abstract] [Full Text] [Related]
30. Effect of graphene oxide with different morphological characteristics on properties of immobilized enzyme in the covalent method. Zhang H, Hua SF, Li CQ, Zhang L, Fan YC, Duan P. Bioprocess Biosyst Eng; 2020 Oct 15; 43(10):1847-1858. PubMed ID: 32448987 [Abstract] [Full Text] [Related]
31. Preparation of magnetic nanoparticles and their use for immobilization of C-terminally lysine-tagged Bacillus sp. TS-23 α-amylase. Chen YH, Chi MC, Wang TF, Chen JC, Lin LL. Appl Biochem Biotechnol; 2012 Apr 15; 166(7):1711-22. PubMed ID: 22328254 [Abstract] [Full Text] [Related]
32. Carboxymethyl cellulose-gelatin-silica nanohybrid: an efficient carrier matrix for alpha amylase. Singh V, Ahmad S. Int J Biol Macromol; 2014 Jun 15; 67():439-45. PubMed ID: 24709014 [Abstract] [Full Text] [Related]
33. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid. Jiang XP, Lu TT, Liu CH, Ling XM, Zhuang MY, Zhang JX, Zhang YW. Int J Biol Macromol; 2016 Jul 15; 88():9-17. PubMed ID: 26995611 [Abstract] [Full Text] [Related]
34. Preparation of enzyme nanoparticles and studying the catalytic activity of the immobilized nanoparticles on polyethylene films. Meridor D, Gedanken A. Ultrason Sonochem; 2013 Jan 15; 20(1):425-31. PubMed ID: 22800814 [Abstract] [Full Text] [Related]
35. Immobilization of the α-amylase of Bacillus amyloliquifaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance. Kikani BA, Pandey S, Singh SP. Bioprocess Biosyst Eng; 2013 May 15; 36(5):567-77. PubMed ID: 22961428 [Abstract] [Full Text] [Related]
36. Dithiocarbamate to modify magnetic graphene oxide nanocomposite (Fe3O4-GO): A new strategy for covalent enzyme (lipase) immobilization to fabrication a new nanobiocatalyst for enzymatic hydrolysis of PNPD. Heidarizadeh M, Doustkhah E, Rostamnia S, Rezaei PF, Harzevili FD, Zeynizadeh B. Int J Biol Macromol; 2017 Aug 15; 101():696-702. PubMed ID: 28363653 [Abstract] [Full Text] [Related]
37. Immobilization of α-amylase enzyme on a protein @metal-organic framework nanocomposite: A new strategy to develop the reusability and stability of the enzyme. Atiroğlu V, Atiroğlu A, Özacar M. Food Chem; 2021 Jul 01; 349():129127. PubMed ID: 33561794 [Abstract] [Full Text] [Related]
38. The development of nanobiocatalysis via the immobilization of cellulase on composite magnetic nanomaterial for enhanced loading capacity and catalytic activity. Han J, Luo P, Wang Y, Wang L, Li C, Zhang W, Dong J, Ni L. Int J Biol Macromol; 2018 Nov 01; 119():692-700. PubMed ID: 30071227 [Abstract] [Full Text] [Related]
39. Surface Modification of Fe(3)O(4)@SiO(2) Magnetic Nanoparticles for Immobilization of Lipase. Xia GH, Liu W, Jiang XP, Wang XY, Zhang YW, Guo J. J Nanosci Nanotechnol; 2017 Jan 01; 17(1):370-6. PubMed ID: 29620837 [Abstract] [Full Text] [Related]
40. Structural and catalytic properties of immobilized α-amylase from Laceyella sacchari TSI-2. Shukla RJ, Singh SP. Int J Biol Macromol; 2016 Apr 01; 85():208-16. PubMed ID: 26740465 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]