These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Analysis of the dissipation kinetics of thiophanate-methyl and its metabolite carbendazim in apple leaves using a modified QuEChERS-UPLC-MS/MS method. Wang Y, Lian S, Dong X, Wang C, Li B, Li P. Biomed Chromatogr; 2019 Feb; 33(2):e4394. PubMed ID: 30248717 [Abstract] [Full Text] [Related]
9. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Ouyang Q, Wang L, Ahmad W, Rong Y, Li H, Hu Y, Chen Q. Food Chem; 2021 Jul 01; 349():129157. PubMed ID: 33578248 [Abstract] [Full Text] [Related]
10. Simultaneous determination of carbendazim and chlorothalonil pesticide residues in peanut oil using excitation-emission matrix fluorescence coupled with three-way calibration method. Yuan YY, Wang ST, Cheng Q, Kong DM, Che XG. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep 05; 220():117088. PubMed ID: 31158606 [Abstract] [Full Text] [Related]
11. Accelerated removal of five pesticide residues in three vegetables with ozone microbubbles. Li X, Liu C, Liu F, Zhang X, Peng Q, Wu G, Lin J, Zhao Z. Food Chem; 2023 Mar 01; 403():134386. PubMed ID: 36194933 [Abstract] [Full Text] [Related]
12. Preparation of W-N-C single atom catalyst and Cu3(HHTP)2 metal-organic framework dual-decorated graphene nanoplatelet flexible electrode arrays for the rapid detection of carbendazim in vegetables. Zhang X, Miao S, Song W, Liu X, Wu C, Gan T. Food Chem; 2024 Nov 30; 459():140338. PubMed ID: 38996633 [Abstract] [Full Text] [Related]
13. Analysis of carbendazim, benomyl, thiophanate methyl and 2,4-dichlorophenoxyacetic acid in fruits and vegetables after supercritical fluid extraction. Anastassiades M, Schwack W. J Chromatogr A; 1998 Oct 30; 825(1):45-54. PubMed ID: 9830710 [Abstract] [Full Text] [Related]
14. Cu2+-Triggered Carbon Dots with Synchronous Response of Dual Emission for Ultrasensitive Ratiometric Fluorescence Determination of Thiophanate-Methyl Residues. Han Y, Yang W, Luo X, He X, Yu Y, Li C, Tang W, Yue T, Li Z. J Agric Food Chem; 2019 Nov 13; 67(45):12576-12583. PubMed ID: 31618026 [Abstract] [Full Text] [Related]
15. Determination of carbendazim residues in fruit juices by liquid chromatography-tandem mass spectrometry. Grujic S, Radisic M, Vasiljevic T, Lausevic M. Food Addit Contam; 2005 Nov 13; 22(11):1132-7. PubMed ID: 16332637 [Abstract] [Full Text] [Related]
16. Zirconium(Ⅳ)-based metal-organic framework for determination of imidacloprid and thiamethoxam pesticides from fruits by UPLC-MS/MS. Xu Y, Li X, Zhang W, Jiang H, Pu Y, Cao J, Jiang W. Food Chem; 2021 May 15; 344():128650. PubMed ID: 33229159 [Abstract] [Full Text] [Related]
17. Determination of carbendazim, thiophanate, thiophanate-methyl and benomyl residues in agricultural products by liquid chromatography-tandem mass spectrometry. Nakamura M, Furumi Y, Watanabe F, Mizukoshi K, Taniguchi M, Nemoto S. Shokuhin Eiseigaku Zasshi; 2011 May 15; 52(3):148-55. PubMed ID: 21720119 [Abstract] [Full Text] [Related]
18. Synthesis of metal framework-modified carbon dots with super large stokes shift using Hami melon as a green precursor for detecting thiophanate-methyl residue in leafy vegetables. Cao C, Guo W. Food Chem; 2024 Dec 01; 460(Pt 2):140703. PubMed ID: 39098191 [Abstract] [Full Text] [Related]
19. Occurrences of eight common-used pesticide adjuvants in ten vegetable species and implications for dietary intake in North China. Jiang D, Cheng Z, Chen X, Dong F, Xu J, Liu X, Wu X, Pan X, An X, Zheng Y. Food Chem; 2021 Jun 15; 347():128984. PubMed ID: 33503574 [Abstract] [Full Text] [Related]
20. Copper metal-organic framework for selective detection of florfenicol based on fluorescence sensing in chicken meat. Hasani R, Ehsani A, Hassanzadazar H, Aminzare M, Khezerlou A. Food Chem X; 2024 Oct 30; 23():101598. PubMed ID: 39071929 [Abstract] [Full Text] [Related] Page: [Next] [New Search]