These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
289 related items for PubMed ID: 33341658
1. Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater. Mohammadian S, Krok B, Fritzsche A, Bianco C, Tosco T, Cagigal E, Mata B, Gonzalez V, Diez-Ortiz M, Ramos V, Montalvo D, Smolders E, Sethi R, Meckenstock RU. J Contam Hydrol; 2021 Feb; 237():103741. PubMed ID: 33341658 [Abstract] [Full Text] [Related]
2. Remediation of zinc-contaminated groundwater by iron oxide in situ adsorption barriers - From lab to the field. Krok B, Mohammadian S, Noll HM, Surau C, Markwort S, Fritzsche A, Nachev M, Sures B, Meckenstock RU. Sci Total Environ; 2022 Feb 10; 807(Pt 3):151066. PubMed ID: 34673060 [Abstract] [Full Text] [Related]
3. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study. Xie X, Wang Y, Pi K, Liu C, Li J, Liu Y, Wang Z, Duan M. Sci Total Environ; 2015 Sep 15; 527-528():38-46. PubMed ID: 25956146 [Abstract] [Full Text] [Related]
4. Results of the reactant sand-fracking pilot test and implications for the in situ remediation of chlorinated VOCs and metals in deep and fractured bedrock aquifers. Marcus DL, Bonds C. J Hazard Mater; 1999 Aug 12; 68(1-2):125-53. PubMed ID: 10518668 [Abstract] [Full Text] [Related]
5. Viscosity modification enhanced the migration and distribution of colloidal Mg(OH)2 in aquifers contaminated by heavy metals. Li B, Pu S, Mandal S, Li M. Environ Int; 2020 May 12; 138():105658. PubMed ID: 32203808 [Abstract] [Full Text] [Related]
6. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application. Yang J, Meng L, Guo L. Environ Sci Pollut Res Int; 2018 Feb 12; 25(6):5051-5062. PubMed ID: 28819708 [Abstract] [Full Text] [Related]
7. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Bennett P, He F, Zhao D, Aiken B, Feldman L. J Contam Hydrol; 2010 Jul 30; 116(1-4):35-46. PubMed ID: 20542350 [Abstract] [Full Text] [Related]
9. Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation. Pi K, Xie X, Ma T, Su C, Li J, Wang Y. Water Res; 2020 Aug 15; 181():115859. PubMed ID: 32438118 [Abstract] [Full Text] [Related]
10. An overview of in situ remediation for groundwater co-contaminated with heavy metals and petroleum hydrocarbons. Yuan L, Wang K, Zhao Q, Yang L, Wang G, Jiang M, Li L. J Environ Manage; 2024 Jan 01; 349():119342. PubMed ID: 37890298 [Abstract] [Full Text] [Related]
11. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI. Mayacela Rojas CM, Rivera Velásquez MF, Tavolaro A, Molinari A, Fallico C. Int J Environ Res Public Health; 2017 Jun 24; 14(7):. PubMed ID: 28672800 [Abstract] [Full Text] [Related]
12. Heavy metal removal capacity of individual components of permeable reactive concrete. Holmes RR, Hart ML, Kevern JT. J Contam Hydrol; 2017 Jan 24; 196():52-61. PubMed ID: 27993468 [Abstract] [Full Text] [Related]
13. In situ reactive zone with modified Mg(OH)2 for remediation of heavy metal polluted groundwater: Immobilization and interaction of Cr(III), Pb(II) and Cd(II). Dong J, Li B, Bao Q. J Contam Hydrol; 2017 Apr 24; 199():50-57. PubMed ID: 28342548 [Abstract] [Full Text] [Related]
19. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies. Luo X, Liu H, Huang G, Li Y, Zhao Y, Li X. Environ Sci Pollut Res Int; 2016 Jan 24; 23(1):870-7. PubMed ID: 26347414 [Abstract] [Full Text] [Related]