These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
137 related items for PubMed ID: 33347282
21. Feasibility study for combination of field-flow fractionation (FFF)-based separation of size-coded particle probes with amplified surface enhanced Raman scattering (SERS) tagging for simultaneous detection of multiple miRNAs. Shin K, Choi J, Kim Y, Lee Y, Kim J, Lee S, Chung H. J Chromatogr A; 2018 Jun 29; 1556():97-102. PubMed ID: 29731290 [Abstract] [Full Text] [Related]
22. Plasmon Coupling-Enhanced Raman Sensing Platform Integrated with Exonuclease-Assisted Target Recycling Amplification for Ultrasensitive and Selective Detection of microRNA-21. Wen S, Su Y, Dai C, Jia J, Fan GC, Jiang LP, Song RB, Zhu JJ. Anal Chem; 2019 Oct 01; 91(19):12298-12306. PubMed ID: 31486639 [Abstract] [Full Text] [Related]
23. A DNA-Fueled and Catalytic Molecule Machine Lights Up Trace Under-Expressed MicroRNAs in Living Cells. Li D, Zhou W, Yuan R, Xiang Y. Anal Chem; 2017 Sep 19; 89(18):9934-9940. PubMed ID: 28809475 [Abstract] [Full Text] [Related]
24. A novel ratiometric SERS biosensor with one Raman probe for ultrasensitive microRNA detection based on DNA hydrogel amplification. He Y, Yang X, Yuan R, Chai Y. J Mater Chem B; 2019 Apr 28; 7(16):2643-2647. PubMed ID: 32254997 [Abstract] [Full Text] [Related]
25. MicroRNA-21 expression in single living cells revealed by fluorescence and SERS dual-response microfluidic droplet platform. Sun D, Cao F, Yi X, Zhu H, Qi G, Xu W, Xu S. Lab Chip; 2022 May 31; 22(11):2165-2172. PubMed ID: 35522901 [Abstract] [Full Text] [Related]
26. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA. Wu Y, Li Y, Han H, Zhao C, Zhang X. Anal Biochem; 2019 Jan 01; 564-565():16-20. PubMed ID: 30312618 [Abstract] [Full Text] [Related]
27. Many Birds, One Stone: A Smart Nanodevice for Ratiometric Dual-Spectrum Assay of Intracellular MicroRNA and Multimodal Synergetic Cancer Therapy. He P, Han W, Bi C, Song W, Niu S, Zhou H, Zhang X. ACS Nano; 2021 Apr 27; 15(4):6961-6976. PubMed ID: 33820415 [Abstract] [Full Text] [Related]
28. Fe₃O₄@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Pang Y, Wang C, Wang J, Sun Z, Xiao R, Wang S. Biosens Bioelectron; 2016 May 15; 79():574-80. PubMed ID: 26749099 [Abstract] [Full Text] [Related]
29. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. Niu X, Chen H, Wang Y, Wang W, Sun X, Chen L. ACS Appl Mater Interfaces; 2014 Apr 09; 6(7):5152-60. PubMed ID: 24617579 [Abstract] [Full Text] [Related]
30. A Ratiometric Fluorescent Bioprobe Based on Carbon Dots and Acridone Derivate for Signal Amplification Detection Exosomal microRNA. Xia Y, Wang L, Li J, Chen X, Lan J, Yan A, Lei Y, Yang S, Yang H, Chen J. Anal Chem; 2018 Aug 07; 90(15):8969-8976. PubMed ID: 29973048 [Abstract] [Full Text] [Related]
31. Binary System for MicroRNA-Targeted Imaging in Single Cells and Photothermal Cancer Therapy. Qian RC, Cao Y, Long YT. Anal Chem; 2016 Sep 06; 88(17):8640-7. PubMed ID: 27482754 [Abstract] [Full Text] [Related]
32. Quantitative and specific detection of cancer-related microRNAs in living cells using surface-enhanced Raman scattering imaging based on hairpin DNA-functionalized gold nanocages. Wang Z, Xue J, Bi C, Xin H, Wang Y, Cao X. Analyst; 2019 Dec 02; 144(24):7250-7262. PubMed ID: 31687670 [Abstract] [Full Text] [Related]
33. g-C3N4 nanosheet-based ratiometric fluorescent probes for the amplification and imaging of miRNA in living cells. Wang Y, Wu N, Guo F, Gao R, Yang T, Wang J. J Mater Chem B; 2019 Dec 21; 7(47):7566-7573. PubMed ID: 31729497 [Abstract] [Full Text] [Related]
34. Visualization of individual microRNA molecules in fixed cells and tissues using target-primed padlock probe assay. Lin C, Jiang M, Duan S, Qiu J, Hong Y, Wang X, Chen X, Ke R. Biochem Biophys Res Commun; 2020 Jun 04; 526(3):607-611. PubMed ID: 32247612 [Abstract] [Full Text] [Related]
35. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques. Wang Z, Zong S, Wang Z, Wu L, Chen P, Yun B, Cui Y. Nanotechnology; 2017 Mar 10; 28(10):105501. PubMed ID: 28139463 [Abstract] [Full Text] [Related]
36. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Ma D, Huang C, Zheng J, Tang J, Li J, Yang J, Yang R. Biosens Bioelectron; 2018 Mar 15; 101():167-173. PubMed ID: 29073517 [Abstract] [Full Text] [Related]
37. Dual Quantification of MicroRNAs and Telomerase in Living Cells. Ma W, Fu P, Sun M, Xu L, Kuang H, Xu C. J Am Chem Soc; 2017 Aug 30; 139(34):11752-11759. PubMed ID: 28762730 [Abstract] [Full Text] [Related]
38. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Wu Y, Han J, Xue P, Xu R, Kang Y. Nanoscale; 2015 Feb 07; 7(5):1753-9. PubMed ID: 25514895 [Abstract] [Full Text] [Related]
39. Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection. You L, Li R, Dong X, Wang F, Guo J, Wang C. J Colloid Interface Sci; 2017 Feb 15; 488():109-117. PubMed ID: 27821331 [Abstract] [Full Text] [Related]
40. Fluorescence activation imaging of localization, distribution, and level of miRNA in various organelles inside cells. Wu C, Liu X, Zheng Y, He W, Yang G, Wu P, Cai C. Talanta; 2018 Aug 15; 186():406-412. PubMed ID: 29784380 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]