These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optimization of alkali pretreatment and enzymatic saccharification of jute (Corchorus olitorius L.) biomass using response surface methodology. Sharma L, Alam NM, Roy S, Satya P, Kar G, Ghosh S, Goswami T, Majumdar B. Bioresour Technol; 2023 Jan; 368():128318. PubMed ID: 36375701 [Abstract] [Full Text] [Related]
3. Promoting enzymatic saccharification of organosolv-pretreated poplar sawdust by saponin-rich tea seed waste. Lai C, Yang C, Zhao Y, Jia Y, Chen L, Zhou C, Yong Q. Bioprocess Biosyst Eng; 2020 Nov; 43(11):1999-2007. PubMed ID: 32524279 [Abstract] [Full Text] [Related]
4. Changes in the structure and composition of pineapple leaf fiber after alkali and ionic surfactant pretreatments and their impact on enzymatic hydrolysis. Zúñiga-Arias D, Charpentier-Alfaro C, Méndez-Arias J, Rodríguez-Mora K. Prep Biochem Biotechnol; 2022 Nov; 52(8):969-978. PubMed ID: 35034574 [Abstract] [Full Text] [Related]
5. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Zhao Y, Wang Y, Zhu JY, Ragauskas A, Deng Y. Biotechnol Bioeng; 2008 Apr 15; 99(6):1320-8. PubMed ID: 18023037 [Abstract] [Full Text] [Related]
6. Comparison of enzymatic saccharification and lignin structure of masson pine and poplar pretreated by p-Toluenesulfonic acid. Chen H, Jiang B, Wu W, Jin Y. Int J Biol Macromol; 2020 May 15; 151():861-869. PubMed ID: 32097741 [Abstract] [Full Text] [Related]
7. Enhancing enzyme-aided production of fermentable sugars from poplar pulp in the presence of non-ionic surfactants. Alhammad A, Adewale P, Kuttiraja M, Christopher LP. Bioprocess Biosyst Eng; 2018 Aug 15; 41(8):1133-1142. PubMed ID: 29700656 [Abstract] [Full Text] [Related]
8. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. He X, Miao Y, Jiang X, Xu Z, Ouyang P. Appl Biochem Biotechnol; 2010 Apr 15; 160(8):2449-57. PubMed ID: 19669940 [Abstract] [Full Text] [Related]
9. Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization. Du SK, Su X, Yang W, Wang Y, Kuang M, Ma L, Fang D, Zhou D. Carbohydr Polym; 2016 Apr 20; 140():279-86. PubMed ID: 26876855 [Abstract] [Full Text] [Related]
10. Comparison of Alkaline Sulfite Pretreatment and Acid Sulfite Pretreatment with Low Chemical Loading in Saccharification of Poplar. Zhang Y, Xin D, Wen P, Chen X, Jia L, Lu Z, Zhang J. Appl Biochem Biotechnol; 2023 Jul 20; 195(7):4414-4428. PubMed ID: 36696039 [Abstract] [Full Text] [Related]
11. Comparison of sodium carbonate-oxygen and sodium hydroxide-oxygen pretreatments on the chemical composition and enzymatic saccharification of wheat straw. Geng W, Huang T, Jin Y, Song J, Chang HM, Jameel H. Bioresour Technol; 2014 Jun 20; 161():63-8. PubMed ID: 24686372 [Abstract] [Full Text] [Related]
12. Hemicelluloses removal in autohydrolysis pretreatment enhances the subsequent alkali impregnation effectiveness of poplar sapwood. Jiang X, Hou Q, Liu W, Zhang H, Qin Q. Bioresour Technol; 2016 Dec 20; 222():361-366. PubMed ID: 27741474 [Abstract] [Full Text] [Related]
13. Autohydrolysis prior to poplar chemi-mechanical pulping: Impact of surface lignin on subsequent alkali impregnation. Yue Z, Hou Q, Liu W, Yu S, Wang X, Zhang H. Bioresour Technol; 2019 Jun 20; 282():318-324. PubMed ID: 30877912 [Abstract] [Full Text] [Related]
14. Assessment of shock pretreatment and alkali pretreatment on corn stover using enzymatic hydrolysis. Olokede O, Hsu SC, Schiele S, Ju H, Holtzapple M. Biotechnol Prog; 2022 Jan 20; 38(1):e3217. PubMed ID: 34591371 [Abstract] [Full Text] [Related]
15. Minimizing water consumption for sugar and lignin recovery via the integration of acid and alkali pretreated biomass and their mixed filtrate without post-washing. Zhao J, Yang Y, Zhang M, Wang D. Bioresour Technol; 2021 Oct 20; 337():125389. PubMed ID: 34134052 [Abstract] [Full Text] [Related]
16. Surface lignin change pertaining to the integrated process of dilute acid pre-extraction and mechanical refining of poplar wood chips and its impact on enzymatic hydrolysis. Liu W, Chen W, Hou Q, Zhang J, Wang B. Bioresour Technol; 2017 Mar 20; 228():125-132. PubMed ID: 28061394 [Abstract] [Full Text] [Related]
17. Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: effect of integrated pretreatment on enzymatic hydrolysis. Yuan TQ, Wang W, Xu F, Sun RC. Bioresour Technol; 2013 Sep 20; 144():429-34. PubMed ID: 23287725 [Abstract] [Full Text] [Related]
18. Effect of autohydrolysis on the wettability, absorbility and further alkali impregnation of poplar wood chips. Xu N, Liu W, Hou Q, Wang P, Yao Z. Bioresour Technol; 2016 Sep 20; 216():317-22. PubMed ID: 27259186 [Abstract] [Full Text] [Related]
19. The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis. Chandra RP, Chu Q, Hu J, Zhong N, Lin M, Lee JS, Saddler J. Bioresour Technol; 2016 Jan 20; 199():135-141. PubMed ID: 26391968 [Abstract] [Full Text] [Related]
20. The cellulase-mediated saccharification on wood derived from transgenic low-lignin lines of black cottonwood (Populus trichocarpa). Min D, Li Q, Jameel H, Chiang V, Chang HM. Appl Biochem Biotechnol; 2012 Oct 20; 168(4):947-55. PubMed ID: 22903324 [Abstract] [Full Text] [Related] Page: [Next] [New Search]