These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
222 related items for PubMed ID: 3335321
1. Effects of intestinal microbial bile salt sulfatase activity on bile salt kinetics in gnotobiotic rats. Robben J, Caenepeel P, Van Eldere J, Eyssen H. Gastroenterology; 1988 Feb; 94(2):494-502. PubMed ID: 3335321 [Abstract] [Full Text] [Related]
2. Influence of microbial bile salt desulfation upon the fecal excretion of bile salts in gnotobiotic rats. Eyssen H, Van Eldere J, Parmentier G, Huijghebaert S, Mertens J. J Steroid Biochem; 1985 Apr; 22(4):547-54. PubMed ID: 3999747 [Abstract] [Full Text] [Related]
3. Influence of a cecal volume-reducing intestinal microflora on the excretion and entero-hepatic circulation of steroids and bile acids. Van Eldere J, Robben J, Caenepeel P, Eyssen H. J Steroid Biochem; 1988 Jan; 29(1):33-9. PubMed ID: 2831434 [Abstract] [Full Text] [Related]
4. Isolation of a rat intestinal Clostridium strain producing 5 alpha- and 5 beta-bile salt 3 alpha-sulfatase activity. Robben J, Parmentier G, Eyssen H. Appl Environ Microbiol; 1986 Jan; 51(1):32-8. PubMed ID: 3954339 [Abstract] [Full Text] [Related]
5. Specificity of bile salt sulfatase activity in man, mouse and rat intestinal microflora. Huijghebaert S, Parmentier G, Eyssen H. J Steroid Biochem; 1984 Apr; 20(4A):907-12. PubMed ID: 6708561 [Abstract] [Full Text] [Related]
6. Influence of an estrone-desulfating intestinal flora on the enterohepatic circulation of estrone-sulfate in rats. van Eldere J, Parmentier G, Robben J, Eyssen H. J Steroid Biochem; 1987 Feb; 26(2):235-9. PubMed ID: 3031374 [Abstract] [Full Text] [Related]
7. Isolation of a bile salt sulfatase-producing Clostridium strain from rat intestinal microflora. Huijghebaert SM, Mertens JA, Eyssen HJ. Appl Environ Microbiol; 1982 Jan; 43(1):185-92. PubMed ID: 7055372 [Abstract] [Full Text] [Related]
8. [Effect of diet and of the microbial flora of the digestive tract on the intestinal pool and fecal excretion of bile acids in the rat: a comparative study in axenic, ghotoxenic and holoxenic rats]. Sacquet E, Mejean C, Leprince C, Riottot M, Raibaud P. Ann Nutr Aliment; 1976 Jan; 30(4):603-17. PubMed ID: 1029426 [Abstract] [Full Text] [Related]
9. Specificity of bile salt sulfatase activity from Clostridium sp. strains S1. Huijghebaert SM, Eyssen HJ. Appl Environ Microbiol; 1982 Nov; 44(5):1030-4. PubMed ID: 7181500 [Abstract] [Full Text] [Related]
10. Laxative treatment with polyethylene glycol decreases microbial primary bile salt dehydroxylation and lipid metabolism in the intestine of rats. van der Wulp MY, Derrien M, Stellaard F, Wolters H, Kleerebezem M, Dekker J, Rings EH, Groen AK, Verkade HJ. Am J Physiol Gastrointest Liver Physiol; 2013 Oct 01; 305(7):G474-82. PubMed ID: 23868407 [Abstract] [Full Text] [Related]
11. [Effect of intestinal flora and diet on rat intestinal pool and fecal excretion of bile salts]. Sacquet ME, Méjean C, Leprince C, Riottot MM. C R Acad Hebd Seances Acad Sci D; 1975 Nov 03; 281(18):1337-9. PubMed ID: 815022 [Abstract] [Full Text] [Related]
12. Absence of cecal secondary bile acids in gnotobiotic mice associated with two human intestinal bacteria with the ability to dehydroxylate bile acids in vitro. Narushima S, Itoh K, Takamine F, Uchida K. Microbiol Immunol; 1999 Nov 03; 43(9):893-7. PubMed ID: 10553682 [Abstract] [Full Text] [Related]
13. Metabolism of lethocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates. Cowen AE, Korman MG, Hofmann AF, Cass OW. Gastroenterology; 1975 Jul 03; 69(1):59-66. PubMed ID: 1150035 [Abstract] [Full Text] [Related]
14. Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model. Studer N, Desharnais L, Beutler M, Brugiroux S, Terrazos MA, Menin L, Schürch CM, McCoy KD, Kuehne SA, Minton NP, Stecher B, Bernier-Latmani R, Hapfelmeier S. Front Cell Infect Microbiol; 2016 Jul 03; 6():191. PubMed ID: 28066726 [Abstract] [Full Text] [Related]
15. Intestinal absorption of lithocholic acid sulfates in the rat: inhibitory effects of calcium. Kuipers F, Heslinga H, Havinga R, Vonk RJ. Am J Physiol; 1986 Aug 03; 251(2 Pt 1):G189-94. PubMed ID: 3740261 [Abstract] [Full Text] [Related]
16. Prebiotic oligosaccharides and the enterohepatic circulation of bile salts in rats. van Meer H, Boehm G, Stellaard F, Vriesema A, Knol J, Havinga R, Sauer PJ, Verkade HJ. Am J Physiol Gastrointest Liver Physiol; 2008 Feb 03; 294(2):G540-7. PubMed ID: 18079281 [Abstract] [Full Text] [Related]
17. The 'in vivo lifestyle' of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice. Ridlon JM, Devendran S, Alves JM, Doden H, Wolf PG, Pereira GV, Ly L, Volland A, Takei H, Nittono H, Murai T, Kurosawa T, Chlipala GE, Green SJ, Hernandez AG, Fields CJ, Wright CL, Kakiyama G, Cann I, Kashyap P, McCracken V, Gaskins HR. Gut Microbes; 2020 May 03; 11(3):381-404. PubMed ID: 31177942 [Abstract] [Full Text] [Related]
18. Transformation of sulfated bile acids by human intestinal microflora. Pacini N, Albini E, Ferrari A, Zanchi R, Marca G, Bandiera T. Arzneimittelforschung; 1987 Aug 03; 37(8):983-7. PubMed ID: 3675701 [Abstract] [Full Text] [Related]
19. Bile acid sulfates. II. Formation, metabolism, and excretion of lithocholic acid sulfates in the rat. Palmer RH. J Lipid Res; 1971 Nov 03; 12(6):680-7. PubMed ID: 5124533 [Abstract] [Full Text] [Related]
20. Composition of cecal bile acids in ex-germfree mice inoculated with human intestinal bacteria. Narushima S, Ito K, Kuruma K, Uchida K. Lipids; 2000 Jun 03; 35(6):639-44. PubMed ID: 10901426 [Abstract] [Full Text] [Related] Page: [Next] [New Search]